Commercial P-Channel Power VDMOSFET as X-ray Dosimeter †
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmes-Siedle, A. The space-charge dosimeter: General principles of a new method of radiation detection. Nucl. Instrum. Methods 1974, 121, 169–179. [Google Scholar] [CrossRef]
- Danković, D.; Mitrović, N.; Prijić, Z.; Stojadinović, N.D. Modeling of NBTS effects in p-channel power VDMOSFETs. IEEE Trans. Device Mater. Reliab. 2020, 20, 204–213. [Google Scholar] [CrossRef]
- Sezgin-Ugranlı, H.G.; Özçelep, Y. Determination of power MOSFET’s gate oxide degradation under different electrical stress levels based on stress-induced oxide capacitance changes. IEEE Trans. Electron Devices 2021, 68, 688–696. [Google Scholar] [CrossRef]
- Abubakkar, S.F.O.; Zabah, N.F.; Abdullah, Y.; Fauzi, D.A.; Muridan, N.; Hasbullah, N.F. Effects of electron radiation on commercial power MOSFET with buck converter application. Nucl. Sci. Tech. 2017, 28, 31. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Levinshtein, M.E.; Ivanov, P.A.; Kozlovski, V.V.; Strel’chuk, A.M.; Shabunina, E.I.; Fursin, L. Effect of irradiation with 15-MeV protons on low frequency noise in power SiC MOSFETs. Semiconductors 2019, 53, 1568–1572. [Google Scholar] [CrossRef]
- Abbate, C.; Busatto, G.; Tedesco, D.; Sanseverino, A.; Silvestrin, L.; Velardi, F.; Wyss, J. Gate damages induced in SiC power MOSFETs during heavy-ion irradiation—Part I. IEEE Trans. Electron Devices 2019, 66, 4235–4242. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Liu, Z.; Xu, J. Investigation of irradiation effects and model parameter extraction for VDMOS field effect transistor exposed to gamma rays. Radiat. Phys. Chem. 2021, 185, 109478. [Google Scholar] [CrossRef]
- Zeng, G.; Liu, X.; Yang, G.; Li, L.; Chen, X.; Jian, Z.; Zhu, S.; Pang, Y. Investigation on γ radiation effects of N-channel VDMOSFETs irradiated without electric field stress. Microelectron. Reliab. 2021, 116, 114019. [Google Scholar] [CrossRef]
- Assaf, J. Characterization of commercial p-MOSFETs for using as a gamma-rays dosimeter. Silicon 2022, 14, 1767–1774. [Google Scholar] [CrossRef]
- Farroh, H.A.; Nasr, A.; Sharshar, K.A. A Study of the performance of an n-channel MOSFET under gamma radiation as a dosimeter. J. Electron. Mater. 2020, 49, 5762–5772. [Google Scholar] [CrossRef]
- Pejovic, M.M. Application of p-channel power VDMOSFET as a high radiation doses sensor. IEEE Trans. Nucl. Sci. 2015, 62, 1905–1910. [Google Scholar] [CrossRef]
- Wang, T.; Wan, X.; Jin, H.; Li, H.; Sun, Y.; Liang, R.; Xu, J.; Zheng, L. Optimization of the cell structure for radiation-hardened power MOSFETs. Electronics 2019, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Abunahla, H.; Mohammad, B. Memristor device for security and radiation applications. In Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Analog Circuits and Signal Processing; Springer: Cham, Switzerland, 2015; pp. 75–92. [Google Scholar] [CrossRef]
- Bessia, F.A.; Flandre, D.; André, N.; Irazoqui, J.; Pérez, M.; Berisso, M.G.; Lipovetzky, J. Fully-depleted SOI MOSFET sensors in accumulation mode for total dose measurement. In Proceedings of the 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Sydney, Australia, 10–17 November 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Bibilashvili, A.; Kushitashvili, Z. Radiation effect on the parameters of field effect transistors with Schottky barrier on GaAs. IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012071. [Google Scholar] [CrossRef]
- Di Bartolomeo, A.; Urban, F.; Pelella, A.; Grillo, A.; Passacantando, M.; Liu, X.; Giubileo, F. Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology 2020, 31, 375204. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, A.; Deevi, S.C.; Yilmaz, E. Influence of frequency and gamma irradiation on the electrical characteristics of Er2O3, Gd2O3, Yb2O3, and HfO2 MOS-based devices. J. Mater. Sci. 2020, 55, 7999–8040. [Google Scholar] [CrossRef]
- Manikanthababu, N.; Basu, T.; Vajandar, S.; Rao, S.V.S.N.; Panigrahi, B.K.; Osipowicz, T.; Pathak, A.P. Radiation tolerance, charge trapping, and defect dynamics studies of ALD-grown Al/HfO2/Si nMOSCAPs. J. Mater. Sci. Mater. Electron. 2020, 31, 3312–3322. [Google Scholar] [CrossRef]
- Sharma, C.; Singh, R.; Chao, D.S.; Wu, T.L. Effects of γ-Ray irradiation on AlGaN/GaN heterostructures and high electron mobility transistor devices. J. Electron. Mater. 2020, 49, 6789–6797. [Google Scholar] [CrossRef]
- Vikulin, I.M.; Gorbachev, V.E.; Nazarenko, A.A. Radiation sensitive detector based on field-effect transistors. Radioelectron. Commun. Syst. 2017, 60, 401–404. [Google Scholar] [CrossRef]
- Carvajal, M.A.; Escobedo, P.; Jiménez-Melguizo, M.; Martínez-García, M.S.; Martínez-Martí, F.; Martínez-Olmos, A.; Palma, A.J. A compact dosimetric system for MOSFETs based on passive NFC tag and smartphone. Sens. Actuators A 2017, 267, 82–89. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Liu, C. A technique for characterizing ionization and displacement defects in NPN transistors induced by 1-MeV electron irradiation. IEEE Trans. Nucl. Sci. 2018, 65, 539–544. [Google Scholar] [CrossRef]
- Prakash, A.P.G.; Pradeep, T.M.; Hegde, V.N.; Pushpa, N.; Bajpai, P.K.; Patel, S.P.; Trivedi, T.; Bhushan, K.G. Comparison of effect of 5 MeV proton and Co-60 gamma irradiation on silicon NPN rf power transistors and N–channel depletion MOSFETs. Radiat. Eff. Defects Solids 2017, 172, 952–963. [Google Scholar] [CrossRef]
- Anjum, A.; Pradeep, T.M.; Vinayakprasanna, N.H.; Pushpa, N.; Tripathi, A.; Prakash, A.P.G. Analysis of 80-MeV carbon and 80-MeV nitrogen ion irradiation effects on n-channel MOSFETs. IEEE Trans. Device Mater. Reliab. 2019, 19, 696–703. [Google Scholar] [CrossRef]
- Tai, Y.; Yeh, S.; Huang, S.; Chang, T. Total-dose effect of X-ray irradiation on low-temperature polycrystalline silicon thin-film transistors. IEEE Electron Device Lett. 2020, 41, 864–867. [Google Scholar] [CrossRef]
- Ristić, G.S.; Jevtić, A.S.; Ilić, S.D.; Dimitrijević, S.; Veljković, S.; Palma, A.J.; Stanković, S.; Andjelković, M.S. Sensitivity of unbiased commercial p-channel power VDMOSFETs to X-ray radiation. In Proceedings of the IEEE 32nd International Conference on Microelectronics (MIEL 2021), Nis, Serbia, 12–14 September 2021; pp. 341–344. [Google Scholar] [CrossRef]
- Zhang, C.-M.; Jazaeri, F.; Borghello, G.; Mattiazzo, S.; Baschirotto, A.; Enz, C. A generalized EKV charge-based MOSFET model including oxide and interface traps. Solid-State Electron. 2021, 177, 107951. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Ishikawa, K.; Sekine, M.; Hori, M.; Tatsumi, T. Reduction in photon-induced interface defects by optimal pulse repetition rate in the pulse-modulated inductively coupled plasma. Jpn. J. Appl. Phys. 2021, 60, 010906. [Google Scholar] [CrossRef]
- Poludniowski, G.; Landry, G.; De Blois, F.; Evans, P.M.; Verhaege, F. SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes. Phys. Med. Biol. 2009, 54, N433–N438. [Google Scholar] [CrossRef] [Green Version]
- Ilić, S.; Jevtić, A.; Stanković, S.; Ristić, G. Floating-gate MOS transistor with dynamic biasing as a radiation sensor. Sensors 2020, 20, 3329. [Google Scholar] [CrossRef]
- Ristić, G.S. Influence of ionizing radiation and hot carrier injection on metal-oxide-semiconductor transistors. J. Phys. D Appl. Phys. 2008, 41, 023001. [Google Scholar] [CrossRef]
- McWhorter, P.J.; Winokur, P.S. Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 1986, 48, 133–135. [Google Scholar] [CrossRef]
- Ristic, G.S.; Andjelkovic, M.S.; Jaksic, A.B. The behavior of fixed and switching oxide traps of RADFETs during irradiation up to high absorbed doses. Appl. Radiat. Isot. 2015, 102, 29–34. [Google Scholar] [CrossRef]
- Ristic, G.S.; Ilic, S.D.; Duane, R.; Andjelkovic, M.S.; Palma, A.J.; Lallena, A.M.; Krstic, M.D.; Stankovic, S.J.; Jaksic, A.B. Radiation sensitive MOSFETs irradiated with various positive gate biases. J. Radiat. Res. Appl. Sci. 2021, 14, 353–357. [Google Scholar] [CrossRef]
- Ristić, G.S.; Pejović, M.M.; Jakšić, A.B. Comparison between post-irradiation annealing and post-high electric field stress annealing of n-channel power VDMOSFETs. Appl. Surf. Sci. 2003, 220, 181–185. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. X-Ray Mass Attenuation Coefficients. Available online: http://physics.nist.gov/xaamdi (accessed on 13 December 2021).
X-ray Beam | Up (kV) | Ip (mA) | Emean (keV) | DKair (mG/s) |
---|---|---|---|---|
RQR3 | 50 | 30 | 32.57 | 9.28 |
RQR8 | 100 | 30 | 50.82 | 26.45 |
RQR10 | 150 | 30 | 56.70 | 30.31 |
VG (V) | SRQR3 (mV/Gy) | SRQR8 (mV/Gy) | SRQR10 (mV/Gy) |
---|---|---|---|
0 | 6.76 | 7.78 | 7.13 |
3 | 19.46 | 22.21 | 20.50 |
6 | 24.10 | 27.50 | 25.68 |
9 | 28.33 | 32.18 | 28.57 |
12 | 30.38 | 34.36 | 32.28 |
15 | 30.27 | 38.81 | 35.00 |
18 | 33.90 | 42.91 | 38.36 |
21 | 34.61 | 42.63 | 38.33 |
X-ray Beam | Ssat (mV/Gy) | a | b |
---|---|---|---|
RQR3 | 0.0343 | 0.7868 | 0.8447 |
RQR8 | 0.0457 | 0.8040 | 0.8907 |
RQR10 | 0.0403 | 0.7980 | 0.8805 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristić, G.S.; Ilić, S.D.; Veljković, S.; Jevtić, A.S.; Dimitrijević, S.; Palma, A.J.; Stanković, S.; Andjelković, M.S. Commercial P-Channel Power VDMOSFET as X-ray Dosimeter. Electronics 2022, 11, 918. https://doi.org/10.3390/electronics11060918
Ristić GS, Ilić SD, Veljković S, Jevtić AS, Dimitrijević S, Palma AJ, Stanković S, Andjelković MS. Commercial P-Channel Power VDMOSFET as X-ray Dosimeter. Electronics. 2022; 11(6):918. https://doi.org/10.3390/electronics11060918
Chicago/Turabian StyleRistić, Goran S., Stefan D. Ilić, Sandra Veljković, Aleksandar S. Jevtić, Strahinja Dimitrijević, Alberto J. Palma, Srboljub Stanković, and Marko S. Andjelković. 2022. "Commercial P-Channel Power VDMOSFET as X-ray Dosimeter" Electronics 11, no. 6: 918. https://doi.org/10.3390/electronics11060918
APA StyleRistić, G. S., Ilić, S. D., Veljković, S., Jevtić, A. S., Dimitrijević, S., Palma, A. J., Stanković, S., & Andjelković, M. S. (2022). Commercial P-Channel Power VDMOSFET as X-ray Dosimeter. Electronics, 11(6), 918. https://doi.org/10.3390/electronics11060918