Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization
Abstract
:1. Introduction
2. Analysis of the State-of-the-Art Scientific Literature
2.1. Research Question
2.2. Test Variables
2.3. Assessment Methodologies
2.3.1. Evaluation Task
2.3.2. Rating Scale
2.4. Viewing Conditions
2.4.1. Viewing Distance
2.4.2. Observer Motion and Viewing Angle
2.4.3. Test Environment
2.5. Test Participant Demographics
3. Novel Research Questions
3.1. Immersion
3.2. Interaction
3.3. Human–Computer Interface
3.4. Viewing Conditions
3.5. Inter-User Effects
3.6. Cognitive Bias
3.7. Under-Represented Observers
3.8. Perceptual Fatigue
3.9. Technological Comparisons
3.10. Dedicated Systems
3.11. High Dynamic Range Visualization
3.12. Super Resolution
3.13. Full-Parallax Imaging
4. Proposed Methodologies
4.1. Physiological Measurements
4.2. Viewing Conditions
4.3. Rating Methodologies
5. Discussion
5.1. Subjective Test Duration and Test Participant Fatigue
5.2. Physical and Mental Conditions of Test Participants
5.3. Training and Screening of Test Participants
5.4. Feasibility and Complexity of Novel Subjective Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adhikarla, V.K.; Vinkler, M.; Sumin, D.; Mantiuk, R.K.; Myszkowski, K.; Seidel, H.P.; Didyk, P. Towards a quality metric for dense light fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 58–67. [Google Scholar]
- Bakir, N.; Fezza, S.A.; Hamidouche, W.; Samrouth, K.; Déforges, O. Subjective Evaluation of Light Field Image Compression Methods based on View Synthesis. In Proceedings of the 27th European Signal Processing Conference (EUSIPCO), Coruña, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Battisti, F.; Bosc, E.; Carli, M.; Le Callet, P.; Perugia, S. Objective image quality assessment of 3D synthesized views. Signal Process. Image Commun. 2015, 30, 78–88. [Google Scholar] [CrossRef]
- Carballeira, P.; Gutiérrez, J.; Morán, F.; Cabrera, J.; García, N. Subjective evaluation of super multiview video in consumer 3D displays. In Proceedings of the Seventh International Workshop on Quality of Multimedia Experience (QoMEX), Costa Navarino, Messinia, 26–29 May 2015; pp. 1–6. [Google Scholar]
- Palma, E.; Battisti, F.; Carli, M.; Astola, P.; Tabus, I. Subjective Quality Evaluation of Light Field Data Under Coding Distortions. In Proceedings of the 28th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 526–530. [Google Scholar]
- Perra, C. Assessing the quality of experience in viewing rendered decompressed light fields. Multimed. Tools Appl. 2018, 77, 21771–21790. [Google Scholar] [CrossRef]
- Paudyal, P.; Battisti, F.; Neri, A.; Carli, M. A study of the impact of light fields watermarking on the perceived quality of the refocused data. In Proceedings of the 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Lisbon, Portugal, 8–10 July 2015; pp. 1–4. [Google Scholar]
- Recio, R.; Carballeira, P.; Gutiérrez, J.; García, N. Subjective assessment of super multiview video with coding artifacts. IEEE Signal Process. Lett. 2017, 24, 868–871. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhao, S.; Zhou, W.; Chen, Z. Perceptual evaluation of light field image. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 41–45. [Google Scholar]
- Wen, W.; Wei, K.; Fang, Y.; Zhang, Y. Visual Quality Assessment for Perceptually Encrypted Light Field Images. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2522–2534. [Google Scholar] [CrossRef]
- Shi, L.; Zhou, W.; Chen, Z.; Zhang, J. No-reference light field image quality assessment based on spatial-angular measurement. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4114–4128. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhou, W.; Shi, L.; Chen, Z. No-reference light field image quality assessment based on micro-lens image. In Proceedings of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5. [Google Scholar]
- Zhou, W.; Shi, L.; Chen, Z.; Zhang, J. Tensor oriented no-reference light field image quality assessment. IEEE Trans. Image Process. 2020, 29, 4070–4084. [Google Scholar] [CrossRef]
- Shan, L.; An, P.; Liu, D.; Ma, R. Subjective evaluation of light field images for quality assessment database. In International Forum on Digital TV and Wireless Multimedia Communications; Springer: Berlin, Germany, 2017; pp. 267–276. [Google Scholar]
- Viola, I.; Ebrahimi, T. VALID: Visual quality assessment for light field images dataset. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Sardinia, Italy, 29 May–1 June 2018; pp. 1–3. [Google Scholar]
- Adhikarla, V.K.; Jakus, G.; Sodnik, J. Design and evaluation of freehand gesture interaction for light field display. In International Conference on Human-Computer Interaction; Springer: Berlin, Germany, 2015; pp. 54–65. [Google Scholar]
- Adhikarla, V.K.; Sodnik, J.; Szolgay, P.; Jakus, G. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller. Sensors 2015, 15, 8642–8663. [Google Scholar] [CrossRef]
- Ahar, A.; Chlipala, M.; Birnbaum, T.; Zaperty, W.; Symeonidou, A.; Kozacki, T.; Kujawinska, M.; Schelkens, P. Suitability analysis of holographic vs light field and 2D displays for subjective quality assessment of Fourier holograms. Opt. Express 2020, 28, 37069–37091. [Google Scholar] [CrossRef]
- Cserkaszky, A.; Barsi, A.; Kara, P.A.; Martini, M.G. To interpolate or not to interpolate: Subjective assessment of interpolation performance on a light field display. In Proceedings of the IEEE International Conference on Multimedia & Expo (ICME) Workshops, Hong Kong, China, 10–14 July 2017; pp. 55–60. [Google Scholar]
- Cserkaszky, A.; Kara, P.A.; Barsi, A.; Martini, M.G. Expert evaluation of a novel light-field visualization format. In Proceedings of the 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video, Helsinki, Finland, 3–5 June 2018; pp. 1–4. [Google Scholar]
- Cserkaszky, A.; Kara, P.A.; Tamboli, R.R.; Barsi, A.; Martini, M.G.; Bokor, L.; Balogh, T. Angularly continuous light-field format: Concept, implementation, and evaluation. J. Soc. Inf. Disp. 2019, 27, 442–461. [Google Scholar] [CrossRef]
- Darukumalli, S.; Kara, P.A.; Barsi, A.; Martini, M.G.; Balogh, T.; Chehaibi, A. Performance comparison of subjective assessment methodologies for Light Field Displays. In Proceedings of the International Symposium on Signal Processing and Information Technology, Limassol, Cyprus, 12–14 December 2016; pp. 28–33. [Google Scholar]
- Darukumalli, S.; Kara, P.A.; Barsi, A.; Martini, M.G.; Balogh, T. Subjective quality assessment of zooming levels and image reconstructions based on region of interest for light field displays. In Proceedings of the International Conference on 3D Imaging (IC3D), Liege, Belgium, 13–14 December 2016; pp. 1–6. [Google Scholar]
- Dricot, A.; Jung, J.; Cagnazzo, M.; Pesquet, B.; Dufaux, F.; Kovács, P.T.; Adhikarla, V.K. Subjective evaluation of Super Multi-View compressed contents on high-end light-field 3D displays. Signal Process. Image Commun. 2015, 39, 369–385. [Google Scholar] [CrossRef]
- Kara, P.A.; Kovács, P.T.; Martini, M.G.; Barsi, A.; Lackner, K.; Balogh, T. From a different point of view: How the field of view of light field displays affects the willingness to pay and to use. In Proceedings of the 8th International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal, 6–8 June 2016. [Google Scholar]
- Kara, P.A.; Kovacs, P.T.; Vagharshakyan, S.; Martini, M.G.; Barsi, A.; Balogh, T.; Chuchvara, A.; Chehaibi, A. The effect of light field reconstruction and angular resolution reduction on the quality of experience. In Proceedings of the 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 781–786. [Google Scholar]
- Kara, P.A.; Martini, M.G.; Kovács, P.T.; Imre, S.; Barsi, A.; Lackner, K.; Balogh, T. Perceived quality of angular resolution for light field displays and the validity of subjective assessment. In Proceedings of the International Conference on 3D Imaging (IC3D), Liege, Belgium, 13–14 December 2016; pp. 1–7. [Google Scholar]
- Kara, P.A.; Kovacs, P.T.; Martini, M.G.; Barsi, A.; Lackner, K.; Balogh, T. Viva la resolution: The perceivable differences between image resolutions for light field displays. In Proceedings of the 5th ISCA/DEGA Workshop on Perceptual Quality of Systems (PQS), Berlin, Germany, 29–31 August 2016; pp. 107–111. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Darukumalli, S.; Barsi, A.; Martini, M.G. On the edge of the seat: Reduced angular resolution of a light field cinema with fixed observer positions. In Proceedings of the Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 29 May–2 June 2017; pp. 1–6. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Barsi, A.; Papp, T.; Martini, M.G.; Bokor, L. The interdependence of spatial and angular resolution in the quality of experience of light field visualization. In Proceedings of the International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2017; pp. 1–8. [Google Scholar]
- Kara, P.A.; Kovács, P.T.; Vagharshakyan, S.; Martini, M.G.; Imre, S.; Barsi, A.; Lackner, K.; Balogh, T. Perceptual quality of reconstructed medical images on projection-based light field displays. In eHealth 360∘; Springer: Berlin/Heidelberg, Germany, 2017; pp. 476–483. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Martini, M.G.; Barsi, A.; Bokor, L.; Balogh, T. Evaluation of the concept of dynamic adaptive streaming of light field video. IEEE Trans. Broadcast. 2018, 64, 407–421. [Google Scholar] [CrossRef]
- Kara, P.A.; Tamboli, R.R.; Cserkaszky, A.; Martini, M.G.; Barsi, A.; Bokor, L. The perceived quality of light-field video services. In Applications of Digital Image Processing XLI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10752, pp. 138–147. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Cserkaszky, A.; Martini, M.G.; Barsi, A.; Bokor, L. The viewing conditions of light-field video for subjective quality assessment. In Proceedings of the International Conference on 3D Immersion (IC3D), Brussels, Belgium, 5 December 2018; pp. 1–8. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Cserkaszky, A.; Barsi, A.; Simon, A.; Kusz, A.; Bokor, L.; Martini, M.G. Objective and subjective assessment of binocular disparity for projection-based light field displays. In Proceedings of the International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2019; pp. 1–8. [Google Scholar]
- Kara, P.A.; Guindy, M.; Balogh, T.; Simon, A. The perceptually-supported and the subjectively-preferred viewing distance of projection-based light field displays. In Proceedings of the International Conference on 3D Immersion (IC3D), online, 8 December 2021; pp. 1–8. [Google Scholar]
- Kovács, P.T.; Lackner, K.; Barsi, A.; Balázs, Á.; Boev, A.; Bregović, R.; Gotchev, A. Measurement of perceived spatial resolution in 3D light-field displays. In Proceedings of the International Conference on Image Processing, Paris, France, 27–30 October 2014; pp. 768–772. [Google Scholar]
- Kovács, P.T.; Boev, A.; Bregović, R.; Gotchev, A. Quality measurements of 3D light-field displays. In Proceedings of the Eighth International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Chandler, AZ, USA, 30–31 January 2014; pp. 1–6. [Google Scholar]
- Kovács, P.T.; Bregović, R.; Boev, A.; Barsi, A.; Gotchev, A. Quantifying Spatial and Angular Resolution of Light-Field 3-D Displays. IEEE J. Sel. Top. Signal Process. 2017, 11, 1213–1222. [Google Scholar] [CrossRef]
- Tamboli, R.; Vupparaboina, K.K.; Ready, J.; Jana, S.; Channappayya, S. A subjective evaluation of true 3D images. In Proceedings of the International Conference on 3D Imaging (IC3D), Liege, Belgium, 9–10 December 2014; pp. 1–8. [Google Scholar]
- Tamboli, R.R.; Appina, B.; Channappayya, S.; Jana, S. Super-multiview content with high angular resolution: 3D quality assessment on horizontal-parallax lightfield display. Signal Process. Image Commun. 2016, 47, 42–55. [Google Scholar] [CrossRef]
- Tamboli, R.R.; Appina, B.; Channappayya, S.S.; Jana, S. Achieving high angular resolution via view synthesis: Quality assessment of 3D content on super multiview lightfield display. In Proceedings of the International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2017; pp. 1–8. [Google Scholar]
- Tamboli, R.R.; Kara, P.A.; Cserkaszky, A.; Barsi, A.; Martini, M.G.; Jana, S. Canonical 3D object orientation for interactive light-field visualization. In Applications of Digital Image Processing XLI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10752, pp. 77–83. [Google Scholar]
- Zhang, X.; Braley, S.; Rubens, C.; Merritt, T.; Vertegaal, R. LightBee: A self-levitating light field display for hologrammatic telepresence. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Scotland, UK, 4–9 May 2019; pp. 1–10. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Doronin, O.; Cserkaszky, A.; Barsi, A.; Nagy, Z.; Martini, M.G.; Simon, A. The key performance indicators of projection-based light field visualization. J. Inf. Disp. 2019, 20, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Karahanna, E. Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Q. 2000, 665–694. [Google Scholar] [CrossRef]
- Volino, M.; Mustafa, A.; Guillemaut, J.Y.; Hilton, A. Light Field Video for Immersive Content Production. In Real VR–Immersive Digital Reality; Springer: Berlin/Heidelberg, Germany, 2020; pp. 33–64. [Google Scholar]
- Kara, P.A.; Barsi, A.; Tamboli, R.R.; Guindy, M.; Martini, M.G.; Balogh, T.; Simon, A. Recommendations on the viewing distance of light field displays. In Digital Optical Technologies 2021; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11788. [Google Scholar]
- Murray, E.G.; Neumann, D.L.; Moffitt, R.L.; Thomas, P.R. The effects of the presence of others during a rowing exercise in a virtual reality environment. Psychol. Sport Exerc. 2016, 22, 328–336. [Google Scholar] [CrossRef]
- Asch, S.E. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychol. Monogr. Gen. Appl. 1956, 70, 1. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, R.S. Confirmation bias: A ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 1998, 2, 175–220. [Google Scholar] [CrossRef]
- Loftus, E.F.; Hoffman, H.G. Misinformation and memory: The creation of new memories. J. Exp. Psychol. 1989, 118, 100. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. The framing of decisions and the psychology of choice. In Behavioral Decision Making; Springer: Berlin/Heidelberg, Germany, 1985; pp. 25–41. [Google Scholar]
- Sherif, M.; Taub, D.; Hovland, C.I. Assimilation and contrast effects of anchoring stimuli on judgments. J. Exp. Psychol. 1958, 55, 150. [Google Scholar] [CrossRef] [Green Version]
- Kara, P.A.; Robitza, W.; Pinter, N.; Martini, M.G.; Raake, A.; Simon, A. Comparison of HD and UHD video quality with and without the influence of the labeling effect. Qual. User Exp. 2019, 4, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kara, P.A.; Cserkaszky, A.; Martini, M.G.; Bokor, L.; Simon, A. The effect of labeling on the perceived quality of HDR video transmission. Cogn. Technol. Work. 2020, 22, 585–601. [Google Scholar] [CrossRef] [Green Version]
- Oyama, T.; Yamamura, T. The effect of hue and brightness on the depth perception in normal and color-blind subjects. Psychologia 1960, 3, 191–194. [Google Scholar] [CrossRef]
- Cserkaszky, A.; Barsi, A.; Nagy, Z.; Puhr, G.; Balogh, T.; Kara, P.A. Real-time light-field 3D telepresence. In Proceedings of the 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland, 26–28 November 2018; pp. 1–5. [Google Scholar]
- Reinhard, E.; Heidrich, W.; Debevec, P.; Pattanaik, S.; Ward, G.; Myszkowski, K. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting; Morgan Kaufmann: Burlington, MA, USA, 2010. [Google Scholar]
- Lumsdaine, A.; Georgiev, T. The focused plenoptic camera. In Proceedings of the IEEE International Conference on Computational Photography (ICCP), San Francisco, CA USA, 16–17 April 2009; pp. 1–8. [Google Scholar]
- Georgiev, T.; Lumsdaine, A.; Chunev, G. Using focused plenoptic cameras for rich image capture. IEEE Comput. Graph. Appl. 2010, 31, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Schedl, D.C.; Birklbauer, C.; Bimber, O. Coded exposure HDR light-field video recording. In Computer Graphics Forum; Wiley Online Library: New York, NY, USA, 2014; Volume 33, pp. 33–42. [Google Scholar]
- Wang, X.; Li, L.; Hou, G. High-resolution light field reconstruction using a hybrid imaging system. Appl. Opt. 2016, 55, 2580–2593. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, X. High dynamic range and all-focus image from light field. In Proceedings of the 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, 15–17 July 2015; pp. 7–12. [Google Scholar]
- Le Pendu, M.; Guillemot, C.; Smolic, A. High dynamic range light fields via weighted low rank approximation. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1728–1732. [Google Scholar]
- Watanabe, H.; Okaichi, N.; Omura, T.; Kano, M.; Sasaki, H.; Kawakita, M. Aktina Vision: Full-parallax three-dimensional display with 100 million light rays. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Gao, X.; Sang, X.; Xing, S.; Yu, X.; Yan, B.; Liu, B.; Wang, P. Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction. Opt. Commun. 2020, 467, 125765. [Google Scholar] [CrossRef]
- Engelke, U.; Darcy, D.P.; Mulliken, G.H.; Bosse, S.; Martini, M.G.; Arndt, S.; Antons, J.N.; Chan, K.Y.; Ramzan, N.; Brunnström, K. Psychophysiology-based QoE assessment: A survey. IEEE J. Sel. Top. Signal Process. 2016, 11, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Bang, J.W.; Heo, H.; Choi, J.S.; Park, K.R. Assessment of eye fatigue caused by 3D displays based on multimodal measurements. Sensors 2014, 14, 16467–16485. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A.F.; Řeřábek, M.; Ebrahimi, T. Towards prediction of sense of presence in immersive audiovisual communications. Electron. Imaging 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pezzulli, S.; Martini, M.G.; Barman, N. Estimation of Quality Scores from Subjective Tests-Beyond Subjects’ MOS. IEEE Trans. Multimed. 2020, 23, 2505–2519. [Google Scholar] [CrossRef]
- Solimini, A.G. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PloS ONE 2013, 8, e56160. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, H.; Kim, W.; Choi, S.; Son, W.; Lee, S. A deep motion sickness predictor induced by visual stimuli in virtual reality. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 554–566. [Google Scholar] [CrossRef]
Publication | Content | Test Variable | Rating Scale | Viewing Dist. | Movement | Display |
---|---|---|---|---|---|---|
Adhikarla et al. [16,17] | interactive | HCI modes | NASA TLX, UEQ | 50 cm | none | prototype |
Ahar et al. [18] | image | spatial distortion | 5-pt. DCR | 5 m | none | 722RC |
Cserkaszky et al. [19] | image | angular res., interpolation | 7-pt. PC | 4.6 m | sideways | C80 |
Cserkaszky et al. [20] | image | angular res., light field format | 3-pt. PC | 4.6–6.5 m | both directions | C80 |
Cserkaszky et al. [21] | image | angular res., light field format | bin., 5-pt. ACR, 7-pt. PC | 4.6–6.5 m | both directions | C80 |
Darukumalli et al. [22] | image | zoom level | 5-pt. ACR, 7-pt. PC | 4.6 m | none | C80 |
Darukumalli et al. [23] | image | zoom level, content alignment | 5-pt. ACR, 5-pt. DCR | 4.6 m | none | C80 |
Dricot et al. [24] | video | compression | 5-pt. DCR | 6 m | none | C80 |
Kara et al. [25] | image | FOV | 10-pt. ACR | up to 5 m | both directions | 80WLT |
Kara et al. [26] | image | angular res., reconstruction | 10-pt. ACR | 4.6 m | sideways | C80 |
Kara et al. [27] | image | angular res. | 10-pt. ACR | 4.6 m | sideways | C80 |
Kara et al. [28] | image | spatial res. | 5-pt. DCR | 4.6–6.6 m | both directions | C80 |
Kara et al. [29] | image | angular res. | bin., 25-pt. QC | 4.6–5.6 m | none | C80 |
Kara et al. [30] | image | angular res., spatial res. | 7-pt. PC | 4.6 m | sideways | C80 |
Kara et al. [31] | image | angular res., reconstruction | 10-pt. ACR | 4.6 m | sideways | C80 |
Kara et al. [32] | video | angular res., spatial res. | 5-pt. PC | 4.6 m | sideways | C80 |
Kara et al. [33] | video | angular res., spatial res. | 5-pt. DCR, 7-pt. PC | 4.6 m | sideways | C80 |
Kara et al. [34] | video | angular res., spatial res. | 5-pt. DCR | 4.6 m | sideways | C80 |
Kara et al. [35] | image | viewing distance | 7-pt. PC | 4.5–7.5 m | none | C80 |
Kara et al. [36] | image | viewing distance | n/a | 0.25–8 m | back and forth | 80WLT, C80 |
Kovacs et al. [37] | image | symbol size | n/a | 5 m | none | C80 |
Kovacs et al. [38] | image | grating density | bin. | 5 m | both directions | C80 |
Kovacs et al. [39] | image | symbol size | n/a | 80 cm | none | 80WLT |
Tamboli et al. [40,41] | image | spatial distortion | 5-pt. ACR | 2.44 m | none | 721RC |
Tamboli et al. [42] | image | angular distortion | 5-pt. ACR | 2.44 m | none | 721RC |
Tamboli et al. [43] | interactive | content orientation | n/a | 4.6 m | sideways | C80 |
Zhang et al. [44] | live video | n/a | n/a | 1.2–3.6 m | both directions | prototype |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, P.A.; Tamboli, R.R.; Shafiee, E.; Martini, M.G.; Simon, A.; Guindy, M. Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization. Electronics 2022, 11, 953. https://doi.org/10.3390/electronics11060953
Kara PA, Tamboli RR, Shafiee E, Martini MG, Simon A, Guindy M. Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization. Electronics. 2022; 11(6):953. https://doi.org/10.3390/electronics11060953
Chicago/Turabian StyleKara, Peter A., Roopak R. Tamboli, Edris Shafiee, Maria G. Martini, Aniko Simon, and Mary Guindy. 2022. "Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization" Electronics 11, no. 6: 953. https://doi.org/10.3390/electronics11060953
APA StyleKara, P. A., Tamboli, R. R., Shafiee, E., Martini, M. G., Simon, A., & Guindy, M. (2022). Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization. Electronics, 11(6), 953. https://doi.org/10.3390/electronics11060953