On the Potential of MP-QUIC as Transport Layer Aggregator for Multiple Cellular Networks
Abstract
:1. Introduction
2. Related Work
2.1. Dynamic Behavior of Transport Protocols in 4G and 5G Cellular Networks
2.2. Application of Multipath Transport Solutions for Cellular Networks
2.3. Multipath Performance and Cellular-WIFI Handovers
2.4. Performance Enhancement Approaches for Multipath Transport
3. Cellular Network Dynamics in the Wild: A Statistical Investigation
3.1. Estimating Downlink Capacity
3.2. Available Cells
3.3. Capacity Statistics and the Potential of Multipath Aggregation
4. Testbed Measurements and Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
TCP | Transmission Control Protocol |
IETF | Internet Engineering Task Force |
ATSSS | Access Traffic Steering, Switching, and Splitting |
MP-QUIC | Multipath QUIC |
WiFi | Wireless Fidelity |
3GPP | 3rd Generation Partnership Project |
LTE | Long Term Evolution |
BBR | Bottleneck Bandwidth and RTT |
RTT | Round-trip Time |
UE | User Equipment |
eNB | Evolved Node B |
LRF | Lowest RTT First |
SOCKS | Socket Secure |
DCCP | Datagram Congestion Control Protocol |
RTO | Retransmission Timeout |
OLIA | Opportunistic Linked Increase Algorithm |
RSRP | Reference Signal Received Power |
SINR | Signal to Interference plus Noise Ratio |
CQI | Channel Quality Indicator |
SP | Single Path |
References
- Langley, A.; Riddoch, A.; Wilk, A.; Vicente, A.; Krasic, C.; Zhang, D.; Yang, F.; Kouranov, F.; Swett, I.; Iyengar, J.; et al. The quic transport protocol: Design and internet-scale deployment. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 183–196. [Google Scholar]
- Li, M.; Lukyanenko, A.; Ou, Z.; Ylä-Jääski, A.; Tarkoma, S.; Coudron, M.; Secci, S. Multipath transmission for the internet: A survey. IEEE Commun. Surv. Tutor. 2016, 18, 2887–2925. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ferlin, S.; Caso, G.; Alay, Ö.; Brunstrom, A. A Survey on Multipath Transport Protocols Towards 5G Access Traffic Steering, Switching and Splitting. IEEE Access 2021, 9, 164417–164439. [Google Scholar] [CrossRef]
- Merz, R.; Wenger, D.; Scanferla, D.; Mauron, S. Performance of LTE in a high-velocity environment: A measurement study. In Proceedings of the 4th Workshop on All Things Cellular: Operations, Applications, & Challenges, Chicago, IL, USA, 22 August 2014; pp. 47–52. [Google Scholar]
- Li, F.; Chung, J.W.; Jiang, X. Driving tcp congestion control algorithms on highway. Proc. Netdev 2017, 2. Article #7. [Google Scholar]
- Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-based congestion control. Commun. ACM 2017, 60, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Midoglu, C.; Kousias, K.; Alay, Ö.; Lutu, A.; Argyriou, A.; Riegler, M.; Griwodz, C. Large scale “speedtest” experimentation in Mobile Broadband Networks. Comput. Netw. 2020, 184, 107629. [Google Scholar] [CrossRef]
- Zhang, M.; Polese, M.; Mezzavilla, M.; Zhu, J.; Rangan, S.; Panwar, S.; Zorzi, M. Will TCP work in mmWave 5G cellular networks? IEEE Commun. Mag. 2019, 57, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Raiciu, C.; Paasch, C.; Barre, S.; Ford, A.; Honda, M.; Duchene, F.; Bonaventure, O.; Handley, M. How hard can it be? Designing and implementing a deployable multipath TCP. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 399–412. [Google Scholar]
- Nikravesh, A.; Guo, Y.; Qian, F.; Mao, Z.M.; Sen, S. An in-depth understanding of multipath TCP on mobile devices: Measurement and system design. In Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 3–7 October 2016; pp. 189–201. [Google Scholar]
- Polese, M.; Jana, R.; Zorzi, M. TCP in 5G mmWave networks: Link level retransmissions and MP-TCP. In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 343–348. [Google Scholar]
- De Coninck, Q.; Bonaventure, O. Multipath quic: Design and evaluation. In Proceedings of the 13th International Conference on Emerging Networking Experiments and Technologies, Incheon, South Korea, 12–15 December 2017; pp. 160–166. [Google Scholar]
- Viernickel, T.; Froemmgen, A.; Rizk, A.; Koldehofe, B.; Steinmetz, R. Multipath QUIC: A deployable multipath transport protocol. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 16–20 May 2018; pp. 1–7. [Google Scholar]
- Khalili, R.; Gast, N.; Popovic, M.; Upadhyay, U.; Le Boudec, J.Y. MPTCP is not pareto-optimal: Performance issues and a possible solution. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies, Nice, France, 10–13 December 2012; pp. 1–12. [Google Scholar]
- Hurtig, P.; Grinnemo, K.J.; Brunstrom, A.; Ferlin, S.; Alay, Ö.; Kuhn, N. Low-latency scheduling in MPTCP. IEEE/ACM Trans. Netw. 2018, 27, 302–315. [Google Scholar] [CrossRef]
- Wu, H.; Alay, Ö.; Brunstrom, A.; Ferlin, S.; Caso, G. Peekaboo: Learning-based Multipath Scheduling for Dynamic Heterogeneous Environments. IEEE J. Sel. Areas Commun. 2020, 38, 2295–2310. [Google Scholar] [CrossRef]
- Raiciu, C.; Niculescu, D.; Bagnulo, M.; Handley, M.J. Opportunistic mobility with multipath TCP. In Proceedings of the 6th International Workshop on MobiArch, Washington, DC, USA, 28 June 2011; pp. 7–12. [Google Scholar]
- Hampel, G.; Rana, A.; Klein, T. Seamless TCP mobility using lightweight MPTCP proxy. In Proceedings of the 11th ACM International Symposium on Mobility Management and Wireless Access, Barcelona, Spain, 3–8 November 2013; pp. 139–146. [Google Scholar]
- Kanagarathinam, M.R.; Singh, S.; Jayaseelan, S.R.; Maheshwari, M.K.; Choudhary, G.K.; Sinha, G. QSOCKS: 0-RTT Proxification Design of SOCKS Protocol for QUIC. IEEE Access 2020, 8, 145862–145870. [Google Scholar] [CrossRef]
- Amend, M.; Bogenfeld, E.; Cvjetkovic, M.; Rakocevic, V.; Pieska, M.; Kassler, A.; Brunstrom, A. A Framework for Multiaccess Support for Unreliable Internet Traffic using Multipath DCCP. In Proceedings of the 2019 IEEE 44th Conference on Local Computer Networks (LCN), Osnabrück, Germany, 14–17 October 2019; pp. 316–323. [Google Scholar]
- Paasch, C.; Detal, G.; Duchene, F.; Raiciu, C.; Bonaventure, O. Exploring mobile/WiFi handover with multipath TCP. In Proceedings of the 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future Design, Helsinki, Finland, 13 August 2012; pp. 31–36. [Google Scholar]
- Fejes, F.; Rácz, S.; Szabó, G. Application agnostic QoE triggered multipath switching for Android devices. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- De Coninck, Q.; Bonaventure, O. MultipathTester: Comparing MPTCP and MPQUIC in Mobile Environments. In Proceedings of the 2019 Network Traffic Measurement and Analysis Conference (TMA), Paris, France, 19–21 June 2019; pp. 221–226. [Google Scholar]
- Sinky, H.; Hamdaoui, B.; Guizani, M. Proactive Multipath TCP for Seamless Handoff in Heterogeneous Wireless Access Networks. IEEE Trans. Wirel. Commun. 2016, 15, 4754–4764. [Google Scholar] [CrossRef]
- Liao, B.; Zhang, G.; Wu, Q.; Li, Z.; Xie, G. Cross-layer Path Selection in Multi-path Transport Protocol for Mobile Devices. arXiv 2020, arXiv:2007.01536. [Google Scholar]
- Sathyanarayana, S.D.; Lee, J.; Lee, J.; Grunwald, D.; Ha, S. Exploiting Client Inference in Multipath TCP Over Multiple Cellular Networks. IEEE Commun. Mag. 2021, 59, 58–64. [Google Scholar] [CrossRef]
- Alay, Ö.; Lutu, A.; Peón-Quirós, M.; Mancuso, V.; Hirsch, T.; Evensen, K.; Hansen, A.; Alfredsson, S.; Karlsson, J.; Brunstrom, A.; et al. Experience: An open platform for experimentation with commercial mobile broadband networks. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, Snowbird, UT, USA, 16–20 October 2017; pp. 70–78. [Google Scholar]
- Safari Khatouni, A.; Trevisan, M.; Giordano, D.; Rajiullah, M.; Alfredsson, S.; Brunstrom, A.; Midoglu, C.; Alay, Ö. An Open Dataset of Operational Mobile Networks. In Proceedings of the 18th ACM Symposium on Mobility Management and Wireless Access, Alicante, Spain, 16–20 November 2020; pp. 83–90. [Google Scholar]
- Tomić, I.A.; Davidović, M.S.; Bjeković, S.M. On the downlink capacity of LTE cell. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–25 November 2015; pp. 181–185. [Google Scholar]
- Østerbø, O. Scheduling and capacity estimation in LTE. In Proceedings of the 2011 23rd International Teletraffic Congress (ITC), San Francisco, CA, USA, 6–9 September 2011; pp. 63–70. [Google Scholar]
- Huitema, C.; Köher, B.; La Goutte, A.; Lubashev, I.; Wu, P.; Ferrieux, A.; Nardi, I.; Stewart, V.; Joshi, A.; Duke, M.; et al. Picoquic, version 48525d89ef4d. Available online: https://github.com/private-octopus/picoquic (accessed on 3 January 2022).
- Lantz, B.; Heller, B.; McKeown, N. A network in a laptop: Rapid prototyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, Monterey, CA, USA, 20–21 October 2010; pp. 1–6. [Google Scholar]
- De Coninck, Q. Minitopo: Scripts to Perform Easy Mininet Testing with Multipath Protocols; Version 7faea31e8ce0. 2020. Available online: https://github.com/qdeconinck/minitopo (accessed on 3 March 2022).
- De Coninck, Q.; Michel, F.; Piraux, M.; Rochet, F.; Given-Wilson, T.; Legay, A.; Pereira, O.; Bonaventure, O. Pluginizing QUIC. In Proceedings of the ACM Special Interest Group on Data Communication (SIGCOMM ’19), Beijing, China, 19–24 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 59–74. [Google Scholar] [CrossRef]
- Zheng, Z.; Ma, Y.; Liu, Y.; Yang, F.; Li, Z.; Zhang, Y.; Zhang, J.; Shi, W.; Chen, W.; Li, D.; et al. XLINK: QoE-Driven Multi-Path QUIC Transport in Large-Scale Video Services. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (SIGCOMM ’21), Online, 23–27 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 418–432. [Google Scholar] [CrossRef]
- Hwang, J.; Walid, A.; Yoo, J. Fast Coupled Retransmission for Multipath TCP in Data Center Networks. IEEE Syst. J. 2018, 12, 1056–1059. [Google Scholar] [CrossRef]
- Ford, A.; Raiciu, C.; Handley, M.; Bonaventure, O.; Paasch, C. TCP Extensions for Multipath Operation with Multiple Addresses, RFC 8684. 2020. Available online: https://www.rfc-editor.org/info/rfc8684 (accessed on 3 March 2022). [CrossRef]
- Red Hat, Inc. Getting Started with Multipath TCP. In Red Hat Enterprise Linux 8 Configuring and Managing Networking; Red Hat, Inc.: Raleigh, NC, USA, 2022; Chapter 30; pp. 193–198. [Google Scholar]
- Coudron, M. Passive Analysis for Multipath TCP. In Proceedings of the Asian Internet Engineering Conference (AINTEC ’19), Phuket, Thailand, 7–9 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 25–32. [Google Scholar] [CrossRef]
- Intel Corporation. Multipath TCP Daemon. 2022. Available online: https://github.com/intel/mptcpd (accessed on 3 March 2022).
Notation | Interpretation | Value |
---|---|---|
network load | 10% | |
thermal noise | −132.24 dBm | |
noise figure of the UE | 7 dB | |
f | channel bandwidth | 10 MHz |
constant | 0.4852 | |
efficiency of the CQI index 15 | 5.5547 | |
C | downscaling to the Shannon-formula | 0.9449 |
Environment | Average Number of Available Cells |
---|---|
Entire dataset | 2.97 |
Residential segment | 3.99 |
Road segment | 3.19 |
Aggregation Level | Average | Median | Percentiles | ||||
---|---|---|---|---|---|---|---|
20th | 10th | 5th | 1st | 0.1th | |||
OP1 SP | 25.74 | 23.24 | 9.05 | 4.70 | 3.12 | 0.43 | 0.03 |
OP2 SP | 19.37 | 16.58 | 2.17 | 0.59 | 0.22 | 0.03 | 0.01 |
Best Single Path | 36.57 | 36.63 | 25.08 | 22.69 | 20.56 | 17.59 | 15.48 |
Multipath | 46.45 | 44.94 | 39.92 | 38.41 | 36.91 | 34.78 | 32.97 |
Goodput [Mbps] | MP Capacity [Mbps] | SP Capacity [Mbps] | Completion Time [s] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
idx | CC alg. | Case | avg | SD | avg | SD | avg | SD | avg | SD |
1 | bbr | sp | 11.68 | 3.30 | 13.41 | 3.78 | 13.41 | 3.78 | 28.17 | 5.85 |
2 | cubic | sp | 11.35 | 2.76 | 13.23 | 3.37 | 13.23 | 3.37 | 28.22 | 5.13 |
3 | fast | sp | 8.63 | 1.56 | 12.86 | 2.35 | 12.86 | 2.34 | 36.50 | 7.74 |
4 | reno | sp | 9.90 | 3.69 | 13.73 | 3.90 | 13.73 | 3.90 | 34.29 | 8.76 |
5 | bbr | 1 | 6.90 | 2.76 | 12.69 | 2.54 | 12.68 | 2.54 | 41.27 | 19.50 |
6 | cubic | 1 | 6.05 | 2.86 | 12.55 | 2.39 | 12.54 | 2.39 | 47.10 | 25.65 |
7 | fast | 1 | 6.23 | 2.73 | 12.88 | 2.35 | 12.87 | 2.35 | 56.84 | 27.61 |
8 | reno | 1 | 3.70 | 1.86 | 12.35 | 2.20 | 12.34 | 2.20 | 83.03 | 40.28 |
9 | bbr | 2 | 13.66 | 5.17 | 20.95 | 4.07 | 13.94 | 4.55 | 20.92 | 5.23 |
10 | cubic | 2 | 13.88 | 3.12 | 20.91 | 3.18 | 13.90 | 3.84 | 25.57 | 9.30 |
11 | fast | 2 | 12.32 | 5.09 | 21.91 | 5.53 | 14.88 | 5.91 | 34.98 | 42.25 |
12 | reno | 2 | 10.57 | 3.47 | 19.76 | 2.18 | 12.87 | 2.57 | 33.14 | 10.23 |
13 | bbr | 3 | 13.53 | 5.35 | 23.63 | 2.34 | 12.82 | 2.75 | 24.51 | 12.64 |
14 | cubic | 3 | 15.71 | 3.24 | 23.67 | 2.13 | 12.97 | 2.57 | 23.13 | 5.86 |
15 | fast | 3 | 15.92 | 4.43 | 24.06 | 3.79 | 13.62 | 4.47 | 26.35 | 29.71 |
16 | reno | 3 | 13.05 | 2.84 | 23.99 | 2.35 | 13.28 | 3.08 | 26.25 | 8.24 |
17 | bbr | 4 | 10.05 | 4.64 | 25.21 | 2.49 | 13.62 | 3.38 | 38.13 | 13.58 |
18 | cubic | 4 | 14.81 | 3.56 | 25.36 | 2.77 | 13.72 | 3.41 | 28.43 | 11.27 |
19 | fast | 4 | 18.12 | 2.67 | 25.94 | 4.11 | 14.46 | 5.26 | 19.96 | 4.19 |
20 | reno | 4 | 13.28 | 3.49 | 25.58 | 2.87 | 13.92 | 3.81 | 29.24 | 7.29 |
21 | mptcp | sp | 12.31 | 7.12 | 13.85 | 8.33 | 13.85 | 8.33 | 27.72 | 5.24 |
22 | mptcp | 1 | 7.93 | 7.33 | 13.27 | 6.75 | 13.26 | 6.75 | 62.17 | 31.98 |
23 | mptcp | 2 | 7.12 | 8.73 | 18.90 | 6.83 | 11.93 | 6.58 | 81.28 | 51.02 |
24 | mptcp | 3 | 8.13 | 9.22 | 21.11 | 9.98 | 12.68 | 7.17 | 101.35 | 108.53 |
25 | mptcp | 4 | 11.35 | 13.76 | 24.79 | 7.47 | 12.94 | 8.09 | 38.59 | 15.85 |
Goodput [Mbps] | MP Capacity [Mbps] | SP Capacity [Mbps] | Completion Time [s] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
idx | CC alg. | topo | avg | SD | avg | SD | avg | SD | avg | SD |
1 | bbr | sp | 15.67 | 3.90 | 18.27 | 4.76 | 18.27 | 4.76 | 20.34 | 3.66 |
2 | cubic | sp | 15.12 | 2.87 | 18.19 | 4.57 | 18.19 | 4.57 | 20.67 | 3.29 |
3 | fast | sp | 10.50 | 2.56 | 17.83 | 3.26 | 17.83 | 3.26 | 33.30 | 10.91 |
4 | reno | sp | 12.92 | 5.95 | 18.76 | 4.60 | 18.76 | 4.60 | 26.08 | 8.92 |
5 | bbr | 1 | 9.21 | 6.67 | 19.10 | 3.72 | 19.09 | 3.72 | 33.20 | 13.89 |
6 | cubic | 1 | 10.03 | 6.57 | 19.33 | 4.13 | 19.32 | 4.13 | 39.26 | 15.76 |
7 | fast | 1 | 4.24 | 2.95 | 18.11 | 1.46 | 18.10 | 1.46 | 78.90 | 44.59 |
8 | reno | 1 | 6.47 | 6.56 | 19.15 | 3.60 | 19.14 | 3.60 | 73.74 | 36.61 |
9 | bbr | 2 | 16.33 | 6.54 | 27.12 | 4.99 | 18.33 | 4.93 | 21.19 | 11.81 |
10 | cubic | 2 | 18.70 | 5.93 | 26.37 | 5.06 | 18.01 | 4.99 | 16.38 | 4.83 |
11 | fast | 2 | 14.08 | 5.43 | 26.45 | 4.15 | 17.60 | 3.70 | 28.04 | 27.21 |
12 | reno | 2 | 11.81 | 5.36 | 26.83 | 3.09 | 17.33 | 2.48 | 31.06 | 16.24 |
13 | bbr | 3 | 13.63 | 6.40 | 30.55 | 3.17 | 18.97 | 4.43 | 29.72 | 13.02 |
14 | cubic | 3 | 21.19 | 5.85 | 28.91 | 3.97 | 18.32 | 4.49 | 19.20 | 12.57 |
15 | fast | 3 | 18.05 | 3.49 | 29.25 | 4.59 | 18.12 | 4.58 | 18.28 | 4.17 |
16 | reno | 3 | 14.41 | 5.54 | 30.41 | 3.04 | 18.19 | 2.86 | 27.22 | 10.51 |
17 | bbr | 4 | 12.17 | 7.20 | 30.05 | 3.68 | 17.34 | 2.76 | 36.64 | 29.14 |
18 | cubic | 4 | 20.30 | 5.59 | 30.71 | 3.48 | 18.64 | 4.18 | 19.14 | 5.92 |
19 | fast | 4 | 17.77 | 4.99 | 30.11 | 4.33 | 18.31 | 4.26 | 20.95 | 12.78 |
20 | reno | 4 | 15.08 | 6.76 | 30.96 | 2.81 | 18.34 | 3.28 | 26.02 | 11.03 |
21 | mptcp | sp | 17.07 | 7.54 | 18.89 | 6.75 | 18.89 | 6.75 | 19.89 | 3.80 |
22 | mptcp | 1 | 8.00 | 8.98 | 18.43 | 7.57 | 18.42 | 7.57 | 67.67 | 35.54 |
23 | mptcp | 2 | 9.08 | 10.67 | 25.88 | 11.41 | 18.63 | 7.38 | 76.11 | 48.78 |
24 | mptcp | 3 | 9.46 | 9.97 | 30.56 | 9.73 | 18.21 | 7.16 | 82.29 | 94.97 |
25 | mptcp | 4 | 11.89 | 11.96 | 32.00 | 9.78 | 18.18 | 7.43 | 50.79 | 34.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krämer, Z.; Németh, F.; Mihály, A.; Molnár, S.; Pelle, I.; Pongrácz, G.; Scharnitzky, D. On the Potential of MP-QUIC as Transport Layer Aggregator for Multiple Cellular Networks. Electronics 2022, 11, 1492. https://doi.org/10.3390/electronics11091492
Krämer Z, Németh F, Mihály A, Molnár S, Pelle I, Pongrácz G, Scharnitzky D. On the Potential of MP-QUIC as Transport Layer Aggregator for Multiple Cellular Networks. Electronics. 2022; 11(9):1492. https://doi.org/10.3390/electronics11091492
Chicago/Turabian StyleKrämer, Zsolt, Felicián Németh, Attila Mihály, Sándor Molnár, István Pelle, Gergely Pongrácz, and Donát Scharnitzky. 2022. "On the Potential of MP-QUIC as Transport Layer Aggregator for Multiple Cellular Networks" Electronics 11, no. 9: 1492. https://doi.org/10.3390/electronics11091492
APA StyleKrämer, Z., Németh, F., Mihály, A., Molnár, S., Pelle, I., Pongrácz, G., & Scharnitzky, D. (2022). On the Potential of MP-QUIC as Transport Layer Aggregator for Multiple Cellular Networks. Electronics, 11(9), 1492. https://doi.org/10.3390/electronics11091492