Resilient Security Framework Using TNN and Blockchain for IoMT
Abstract
:1. Introduction
- Reviewing recent state-of-the-art methods used to enhance the security of the IoMT.
- Using a TNN to perform anomaly detection procedures for identifying normal data (true data) and malicious data (cyberattacks) collected from medical sensors.
- Utilizing a blockchain-based scheme for non-financial applications to simulate blockchain activity in fog nodes of the IoMT to enhance the data’s integrity and privacy.
- Proposing a security framework for IoMT that combines the power of TNN and blockchain. The TNN is utilized for anomaly detection to capture data injected with a cyberattack. Blockchain maintains the integrity and privacy of the data to ensure that stored and transmitted data cannot be altered.
2. Related Work
3. Dataset
- ECG monitoring: this device is used to monitor the heart rate.
- Electromyography (EMG) Sensor is used for measuring the electrical signal produced by the muscles.
- Infusion Pump: this device is used to deliver medications or nutrients.
- AirFlow Sensor is utilized for measuring the patient’s breathing level.
- Pulse Oximeter (SPO2): this device can be placed on the finger of the patient to measure the Oxygen level.
- Glucometer: It measures the amount of glucose within the blood.
- A blood pressure device is utilized for checking the individual’s blood pressure.
- The Galvanic Skin Response (GSR) Sensor measures the skin’s electric signal.
- Finally, a body Temperature Sensor is used for measuring the temperature of an individual’s body.
- An air humidity sensor is utilized for measuring the air’s humidity.
- Air temperature sensor: it calculates the temperature of the air.
- CO sensor: this device is used to sense the carbon monoxide level in the ICU room.
- Fire sensor: this device detects fire or flame in the ICU room.
- Smoke sensor: this device is used to detect the level of smoke in the ICU room.
- Barometer: this device measures the air pressure in the ICU room.
- Solar radiation sensor: this device is used to measure the power of the heat of the light or the sun.
4. Methodology
4.1. Proposed Security Framework of IoMT
4.2. Tri-Layered Neural Network Classifiers
4.3. Blockchain
Blockchain Scheme
Algorithm 1: BlockchainMain() | |
1: | Initialize the following variables: |
2: | rows ← [ ] |
3: | chunk ← [ ] |
4: | chunk_size ← N |
5: | Read the CSV file and store the rows in the list “rows”. |
6: | Split the list “rows” into chunks based on the chunk_size |
7: | for each chunk in chunks: |
8: | call BlockchainClass |
9: | blockchain = BlockchainClass() |
10: | call device class |
11: | deviceobject = DeviceClass(blockchain, chunk) |
12: | Start a new thread of device object |
13: | Wait for all device threads to finish |
14: | End for |
Algorithm 2: BlockchainClass | |
1: | Create an object “lock” with a threading lock |
2: | Set the difficulty to 1 |
3: | Initialize the blocks list and assign the Genesis_block as the first item |
4: | Initialize the transactions list = [ ] |
5: | add_block(block) |
6: | if block.previous_hash == blocks[last].hash |
7: | add the block to the blocks list |
8: | return True |
9: | else |
10: | return False |
11: | broadcast_transaction(transaction) |
12: | Use thread lock object |
13: | transactions = [transaction] |
14: | mine_block() |
15: | new_block = BlockClass(transactions, blocks[last].hash, difficulty) |
16: | new_block = mine() |
17: | return new_block |
- Data: the data stored in the block.
- previous_hash: the hash value of the previous block in the blockchain.
- Hash: the hash value of the current block.
- Difficulty: the difficulty level for mining the block.
- Nonce: the arbitrary number used to change the block’s hash value during mining.
- Timestamp: the time at which the block was mined.
Algorithm 3: BlockClass | |
1: | Initialize the objects: |
2: | data, |
3: | previous_hash, |
4: | hash, |
5: | difficulty, |
6: | nonce, |
7: | timestamp |
8: | mine() |
9: | Calculate hash using sha256 |
Algorithm 4: DeviceClass | |
1: | Define a class named “device” that inherits from the thread function |
2: | Use the following object: |
3: | blockchain |
4: | rows |
5: | pending_transactions = 0 |
6: | create a dictionary called transaction[] |
7: | run() |
8: | for each row in rows |
9: | if pending_transactions < 35 |
10: | transaction = [data] |
11: | broadcast_transition (transaction) |
12: | pending_transactions += 1 |
13: | else |
14: | block = mine_block() |
15: | pending_transactions = 0 |
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dilawar, N.; Rizwan, M.; Ahmad, F.; Akram, S. Blockchain: Securing internet of medical things (IoMT). Int. J. Adv. Comput. Sci. Appl. 2019, 10. [Google Scholar] [CrossRef]
- Mavrogiorgou, A.; Kiourtis, A.; Perakis, K.; Pitsios, S.; Kyriazis, D. IoT in healthcare: Achieving interoperability of high-quality data acquired by IoT medical devices. Sensors 2019, 19, 1978. [Google Scholar] [CrossRef] [PubMed]
- Koutras, D.; Stergiopoulos, G.; Dasaklis, T.; Kotzanikolaou, P.; Glynos, D.; Douligeris, C. Security in IoMT communications: A survey. Sensors 2020, 20, 4828. [Google Scholar] [CrossRef] [PubMed]
- Aman, A.H.M.; Hassan, W.H.; Sameen, S.; Attarbashi, Z.S.; Alizadeh, M.; Latiff, L.A. IoMT amid COVID-19 pandemic: Application, architecture, technology, and security. J. Netw. Comput. Appl. 2021, 174, 102886. [Google Scholar]
- Yaacoub, J.-P.A.; Noura, M.; Noura, H.N.; Salman, O.; Yaacoub, E.; Couturier, R.; Chehab, A. Securing internet of medical things systems: Limitations, issues and recommendations. Future Gener. Comput. Syst. 2020, 105, 581–606. [Google Scholar] [CrossRef]
- Almalki, J.; Al Shehri, W.; Mehmood, R.; Alsaif, K.; Alshahrani, S.M.; Jannah, N.; Khan, N.A. Enabling Blockchain with IoMT Devices for Healthcare. Information 2022, 13, 448. [Google Scholar] [CrossRef]
- Ghubaish, A.; Salman, T.; Zolanvari, M.; Unal, D.; Al-Ali, A.; Jain, R. Recent advances in the internet-of-medical-things (IoMT) systems security. IEEE Internet Things J. 2020, 8, 8707–8718. [Google Scholar] [CrossRef]
- Bagaa, M.; Taleb, T.; Bernabe, J.B.; Skarmeta, A. A machine learning security framework for iot systems. IEEE Access 2020, 8, 114066–114077. [Google Scholar] [CrossRef]
- Alsulami, A.A.; Abu Al-Haija, Q.; Tayeb, A.; Alqahtani, A. An Intrusion Detection and Classification System for IoT Traffic with Improved Data Engineering. Appl. Sci. 2022, 12, 12336. [Google Scholar] [CrossRef]
- Khan, M.U.; Samer, S.; Samer, A.; Mobeen, A.; Arshad, A.; Khan, H. Classification of phonocardiography based heart auscultations while listening to Tilawat-e-Quran and music using vibrational mode decomposition. In Proceedings of the 2021 International Conference on Applied and Engineering Mathematics (ICAEM), Taxila, Pakistan, 30–31 August 2021; pp. 25–30. [Google Scholar]
- Fei, J.; Chen, Y.; Liu, L.; Fang, Y. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller. IEEE Trans. Cybern. 2021, 52, 9519–9534. [Google Scholar] [CrossRef]
- Hariguna, T.; Durachman, Y.; Yusup, M.; Millah, S. Blockchain technology transformation in advancing future change. Blockchain Front. Technol. 2021, 1, 13–20. [Google Scholar] [CrossRef]
- Laroiya, C.; Saxena, D.; Komalavalli, C. Applications of blockchain technology. In Handbook of Research on Blockchain Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 213–243. [Google Scholar]
- Bao, J.; He, D.; Luo, M.; Choo, K.-K.R. A survey of blockchain applications in the energy sector. IEEE Syst. J. 2020, 15, 3370–3381. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Srivastava, G.; Parizi, R.M.; Dehghantanha, A.; Choo, K.-K.R.; Aledhari, M. Decentralized authentication of distributed patients in hospital networks using blockchain. IEEE J. Biomed. Health Inform. 2020, 24, 2146–2156. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R. Leveraging blockchain for ensuring trust in IoT: A survey. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 8599–8622. [Google Scholar] [CrossRef]
- Wang, S.; Ouyang, L.; Yuan, Y.; Ni, X.; Han, X.; Wang, F.-Y. Blockchain-enabled smart contracts: Architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2266–2277. [Google Scholar] [CrossRef]
- Atlam, H.F.; Alenezi, A.; Alassafi, M.O.; Wills, G. Blockchain with internet of things: Benefits, challenges, and future directions. Int. J. Intell. Syst. Appl. 2018, 10, 40–48. [Google Scholar] [CrossRef]
- Hussain, F.; Abbas, S.G.; Shah, G.A.; Pires, I.M.; Fayyaz, U.U.; Shahzad, F.; Garcia, N.M.; Zdravevski, E. A framework for malicious traffic detection in IoT healthcare environment. Sensors 2021, 21, 3025. [Google Scholar] [CrossRef]
- Kuzlu, M.; Fair, C.; Guler, O. Role of artificial intelligence in the Internet of Things (IoT) cybersecurity. Discov. Internet Things 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Roopak, M.; Tian, G.Y.; Chambers, J. Deep learning models for cyber security in IoT networks. In Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 452–457. [Google Scholar]
- Rathore, S.; Kwon, B.W.; Park, J.H. BlockSecIoTNet: Blockchain-based decentralized security architecture for IoT network. J. Netw. Comput. Appl. 2019, 143, 167–177. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, Y.; Chen, J.; Zhang, Y.; Song, J.; Zhou, M.; Pustišek, M. Towards decentralized IoT security enhancement: A blockchain approach. Comput. Electr. Eng. 2018, 72, 266–273. [Google Scholar] [CrossRef]
- Kumar, R.; Tripathi, R. Towards design and implementation of security and privacy framework for internet of medical things (iomt) by leveraging blockchain and ipfs technology. J. Supercomput. 2021, 77, 7916–7955. [Google Scholar] [CrossRef]
- Alsubaei, F.; Abuhussein, A.; Shandilya, V.; Shiva, S. IoMT-SAF: Internet of medical things security assessment framework. Internet Things 2019, 8, 100123. [Google Scholar] [CrossRef]
- Azeem, M.; Ullah, A.; Ashraf, H.; Jhanjhi, N.; Humayun, M.; Aljahdali, S.; Tabbakh, T.A. Fog-oriented secure and lightweight data aggregation in iomt. IEEE Access 2021, 9, 111072–111082. [Google Scholar] [CrossRef]
- Jolfaei, A.A.; Aghili, S.F.; Singelee, D. A survey on blockchain-based IoMT systems: Towards scalability. IEEE Access 2021, 9, 148948–148975. [Google Scholar] [CrossRef]
- Dwivedi, A.D.; Malina, L.; Dzurenda, P.; Srivastava, G. Optimized blockchain model for internet of things based healthcare applications. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 135–139. [Google Scholar]
- Skrodelis, H.K.; Romanovs, A. Synthetic Network Traffic Generation in IoT Supply Chain Environment. In Proceedings of the 2022 63rd International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS), Riga, Latvia, 6–7 October 2022; pp. 1–5. [Google Scholar]
- Vaccari, I.; Aiello, M.; Cambiaso, E. SlowITe, a novel denial of service attack affecting MQTT. Sensors 2020, 20, 2932. [Google Scholar] [CrossRef]
- Omar, I.A.; Jayaraman, R.; Salah, K.; Yaqoob, I.; Ellahham, S. Applications of blockchain technology in clinical trials: Review and open challenges. Arab. J. Sci. Eng. 2021, 46, 3001–3015. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic relu. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XIX 16. pp. 351–367. [Google Scholar]
- Wang, G.; Giannakis, G.B.; Chen, J. Learning ReLU networks on linearly separable data: Algorithm, optimality, and generalization. IEEE Trans. Signal Process. 2019, 67, 2357–2370. [Google Scholar] [CrossRef]
- Maray, M.; Alghamdi, M.; Alazzam, M.B. Diagnosing cancer using IOT and machine learning methods. Comput. Intell. Neurosci. 2022, 2022, 9896490. [Google Scholar] [CrossRef]
- Nofer, M.; Gomber, P.; Hinz, O.; Schiereck, D. Blockchain. Bus. Inf. Syst. Eng. 2017, 59, 183–187. [Google Scholar] [CrossRef]
- How Block Hashes Work in Blockchain? Available online: https://www.geeksforgeeks.org/how-block-hashes-work-in-blockchain/ (accessed on 20 February 2023).
- Yang, X.; Chen, Y.; Chen, X. Effective scheme against 51% attack on proof-of-work blockchain with history weighted information. In Proceedings of the 2019 IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 261–265. [Google Scholar]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 1 March 2023).
- Al-Haija, Q.A.; Alsulami, A.A. High performance classification model to identify ransomware payments for heterogeneous bitcoin networks. Electronics 2021, 10, 2113. [Google Scholar] [CrossRef]
- Alsulami, A.A.; Abu Al-Haija, Q.; Alqahtani, A.; Alsini, R. Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model. Symmetry 2022, 14, 1450. [Google Scholar] [CrossRef]
- Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON schema. In Proceedings of the 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016; pp. 263–273. [Google Scholar]
Research | Security Methods |
---|---|
Roopak et al. [21] | CNN + LSTM |
Alsulami et al. [9] | KNN, SNNsNN, SVM, DT, BT |
Wang et al. [17] | deep neural network and blockchain |
Qian et al. [23] | Blockchain |
Kumar et al. [24] | IPFS |
Alsubaei et al. [25] | IoMT-SAF |
Azeem et al. [26] | ESDTA |
Dwivedi et al. [28] | blockchain |
Labels | Type | Number of Records |
---|---|---|
Patient Monitoring | Normal | 76,810 |
Environment Monitoring | Normal | 31,758 |
Attack | Malicious | 79,075 |
Total Records | 187,643 |
Detection Model | Classification Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
NB | 52.18% | 79.67% | 99.71% | 68.51% |
KNN | 99.49% | 99.65% | 99.69% | 99.59% |
RF | 99.51% | 99.71% | 99.80% | 99.65% |
AB | 99.50% | 99.55% | 99.45% | 99.47% |
LogR | 99.50% | 95.29% | 90.35% | 94.71% |
DT | 99.48% | 99.69% | 99.80% | 99.64% |
Proposed TNN | 99.99% | 99.99% | 100% | 99.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsemmeari, R.A.; Dahab, M.Y.; Alsulami, A.A.; Alturki, B.; Algarni, S. Resilient Security Framework Using TNN and Blockchain for IoMT. Electronics 2023, 12, 2252. https://doi.org/10.3390/electronics12102252
Alsemmeari RA, Dahab MY, Alsulami AA, Alturki B, Algarni S. Resilient Security Framework Using TNN and Blockchain for IoMT. Electronics. 2023; 12(10):2252. https://doi.org/10.3390/electronics12102252
Chicago/Turabian StyleAlsemmeari, Rayan A., Mohamed Yehia Dahab, Abdulaziz A. Alsulami, Badraddin Alturki, and Sultan Algarni. 2023. "Resilient Security Framework Using TNN and Blockchain for IoMT" Electronics 12, no. 10: 2252. https://doi.org/10.3390/electronics12102252
APA StyleAlsemmeari, R. A., Dahab, M. Y., Alsulami, A. A., Alturki, B., & Algarni, S. (2023). Resilient Security Framework Using TNN and Blockchain for IoMT. Electronics, 12(10), 2252. https://doi.org/10.3390/electronics12102252