Assessing Control Sustainability Using L-Moment Ratio Diagrams
Abstract
:1. Introduction
2. Methods and Algorithms
2.1. Control Performance Assessment
2.2. Statistical Moments
2.3. L-moments
2.4. Moment Ratio Diagrams
2.5. L-moment Ratio Diagrams
2.6. Discordance Measure
2.7. LMRD in Control Sustainability Task
- Select periods of the consistent system operation, i.e., of the comparable plant load and performance. This choice will justify that we will be evaluating comparable and appropriate plant modes. One can also imagine a situation where a separate analysis is conducted for different operating regimes, such as different loads.
- Collect the respective time series of the loop control errors, as the basis for evaluations.
- Calculate L-moments for the considered data.
- Plot LMRD for the selected loops.
- Calculate discordance measures.
- Identify and label discordant observations.
3. Ammonia Plant APC Implementation
3.1. Plant Description
- Methane conversion (raw materials heating: natural gas, process air, oxygen and 3.2 MPa steam) in the preheaters; next autothermal methane reforming,
- Carbon oxide conversion in shift reaction,
- CO removal in Benfield unit by the absorption in hot potassium carbonate and activator solution,
- CO and CO residuals removal from process gas: Copper-Ammonia Cleaning.
3.2. Control System Layout
4. System Sustainability Analysis
4.1. Data Selection
4.2. Data Collection
4.3. L-moments Evaluation
4.4. LMRD Plots
4.5. Discordance Measure Evaluation
4.6. Concentration Analysis
4.7. Discussion of the Results
5. Conclusions and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LMRD | L-Moment Ratio Diagram |
MRD | Moment Ratio Diagram |
APC | Advanced Process Control |
MPC | Model Predictive Control |
CPA | Control Performance Assessment |
Probability Density Function | |
MCD | Minimum Covariance Determinant |
GeoMed | Geometric Median |
DCS | Distributed Control System |
OPC | OLE for Process Control |
MAN | Manual mode |
AUTO | Automatic mode |
CAS | Cascaded mode |
RCAS | Remote Cascaded mode |
References
- Singh, P.; Verma, P.; Perrotti, D.; Srivastava, K.K. Environmental Sustainability and Economy; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Samad, T. A Survey on Industry Impact and Challenges Thereof [Technical Activities]. IEEE Control Syst. Mag. 2017, 37, 17–18. [Google Scholar]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. Ser. B (Methodol.) 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Giełczewski, M.; Piniewski, M.; Domański, P. Mixed statistical and data mining analysis of river flow and catchment properties at regional scale. Stoch. Environ. Res. Risk Assess. 2022, 36, 2861–2882. [Google Scholar] [CrossRef]
- Lillo, C.; Leiva, V.; Nicolis, O.; Aykroyd, R.G. L-moments of the Birnbaum–Saunders distribution and its extreme value version: Estimation, goodness of fit and application to earthquake data. J. Appl. Stat. 2018, 45, 187–209. [Google Scholar] [CrossRef]
- Louzada, F.; Ramos, P.; Perdoná, G. Different Estimation Procedures for the Parameters of the Extended Exponential Geometric Distribution for Medical Data. Comput. Math. Methods Med. 2016, 2016, 8727951. [Google Scholar] [CrossRef]
- Jelali, M. Control Performance Management in Industrial Automation: Assessment, Diagnosis and Improvement of Control Loop Performance; Springer: London, UK, 2013. [Google Scholar]
- Domański, P.D. Control Performance Assessment: Theoretical Analyses and Industrial Practice; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Dziuba, K.; Góra, R.; Domański, P.D.; awryńczuk, M. Multicriteria Ammonia Plant Assessment for the Advanced Process Control Implementation. IEEE Access 2020, 8, 207923–207937. [Google Scholar] [CrossRef]
- Shardt, Y.; Zhao, Y.; Qi, F.; Lee, K.; Yu, X.; Huang, B.; Shah, S. Determining the state of a process control system: Current trends and future challenges. Can. J. Chem. Eng. 2012, 90, 217–245. [Google Scholar] [CrossRef]
- O’Neill, Z.; Li, Y.; Williams, K. HVAC control loop performance assessment: A critical review (1587-RP). Sci. Technol. Built Environ. 2017, 23, 619–636. [Google Scholar] [CrossRef]
- Spinner, T.; Srinivasan, B.; Rengaswamy, R. Data-based automated diagnosis and iterative retuning of proportional-integral (PI) controllers. Control Eng. Pract. 2014, 29, 23–41. [Google Scholar] [CrossRef]
- Harris, T.J.; Seppala, C.T. Recent Developments in Controller Performance Monitoring and Assessment Techniques. In Proceedings of the Sixth International Conference on Chemical Process Control, Tucson, AZ, USA, 7–12 January 2001; pp. 199–207. [Google Scholar]
- Pillay, N.; Govender, P. Multi-Class SVMs for Automatic Performance Classification of Closed Loop Controllers. J. Control Eng. Appl. Inform. 2017, 19, 3–12. [Google Scholar]
- Knierim-Dietz, N.; Hanel, L.; Lehner, J. Definition and Verification of the Control Loop Performance for Different Power Plant Types; Technical Report; Institute of Combustion and Power Plant Technology, University of Stutgart: Stuttgart, Germany, 2012. [Google Scholar]
- Khamseh, S.A.; Sedigh, A.K.; Moshiri, B.; Fatehi, A. Control performance assessment based on sensor fusion techniques. Control Eng. Pract. 2016, 49, 14–28. [Google Scholar] [CrossRef]
- Choudhury, M.A.A.S.; Shah, S.L.; Thornhill, N.F. Diagnosis of poor control-loop performance using higher-order statistics. Automatica 2004, 40, 1719–1728. [Google Scholar] [CrossRef]
- Zhong, L. Defect distribution model validation and effective process control. In Proceedings of the Advanced Microelectronic Manufacturing, Santa Clara, CA, USA, 15 July 2003; Volume 5041, pp. 1–8. [Google Scholar]
- Li, Y.; O’Neill, Z. Evaluating control performance on building HVAC controllers. In Proceedings of the International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015; pp. 962–967. [Google Scholar]
- Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Peel, M.; Wang, Q.; Mcmahon, T. The utility L-moment ratio diagrams for selecting a regional probability distribution. Hydrol. Sci. J. 2001, 46, 147–155. [Google Scholar] [CrossRef]
- Hosking, J.R.M. Moments or L-Moments? An Example Comparing Two Measures of Distributional Shape. Am. Stat. 1992, 46, 186–189. [Google Scholar] [CrossRef]
- Craig, C.C. A New Exposition and Chart for the Pearson System of Frequency Curves. Ann. Math. Stat. 1936, 7, 16–28. [Google Scholar] [CrossRef]
- Bobee, B.; Perreault, L.; Ashkar, F. Two kinds of moment ratio diagrams and their applications in hydrology. Stoch. Hydrol. Hydraul. 1993, 7, 41–65. [Google Scholar] [CrossRef]
- Vargo, E.; Pasupathy, R.; Leemis, L. Moment-Ratio Diagrams for Univariate Distributions. J. Qual. Technol. 2010, 42, 1–11. [Google Scholar] [CrossRef]
- Cox, D.R.; Oakes, D. Analysis of Survival Data; Chapman and Hall: London, UK, 1984. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Domański, P.D. Study on Statistical Outlier Detection and Labelling. Int. J. Autom. Comput. 2020, 17, 788–811. [Google Scholar] [CrossRef]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; John Wiley & Sons, Inc.: New York, NY, USA, 1987. [Google Scholar]
- Neykov, N.M.; Neytchev, P.N.; Van Gelder, P.H.A.J.M.; Todorov, V.K. Robust detection of discordant sites in regional frequency analysis. Water Resour. Res. 2007, 43, W06417. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Driessen, K.V. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 1999, 41, 212–223. [Google Scholar] [CrossRef]
- Weiszfeld, E. Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 1937, 43, 355–386. [Google Scholar]
- Gabor, J.; Pakulski, D.; Domański, P.D.; Świrski, K. Closed loop NOx control and optimization using neural networks. In Proceedings of the IFAC Symposium on Power Plants and Power Systems Control 2000, Brussels, Belgium, 26–29 April 2000; pp. 141–146. [Google Scholar]
normal | median | ||||
0.1334 | −0.0322 | 5.2014 | 4.6643 | 97.0951 | |
L-moments | |||||
0.1334 | 2.3418 | 17.5593 | 0.0593 | 0.1957 |
Month Number | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||
ambient | temp | 17.2 | 19.8 | 12.7 | 10.7 | 7.5 | 1.8 | 4.0 | 4.9 | 5.4 | 7.6 | 8.7 | 23.6 | 22.8 | 17.6 |
press | 1001.8 | 992.9 | 993.7 | 997.7 | 1014.8 | 1003.9 | 981.0 | 1015.4 | 1005.1 | 1000.9 | 990.9 | 999.7 | 997.3 | 1001.8 | |
humi | 76.8 | 90.0 | 100.0 | 97.9 | 99.1 | 99.7 | 95.6 | 95.1 | 82.7 | 95.0 | 85.7 | 81.1 | 83.3 | 89.3 | |
dens | 5.16 | 2.47 | 5.34 | 6.41 | 7.76 | 9.41 | 8.63 | 8.81 | 9.06 | 7.76 | 7.75 | 1.25 | 1.41 | 3.87 | |
Loop Number | 1 | 2.35 | 1.23 | 1.31 | 1.05 | 1.16 | 0.95 | 1.15 | 0.99 | 0.95 | 1.13 | 0.95 | 2.22 | 1.12 | 0.80 |
2 | 0.81 | 2.01 | 1.02 | 0.77 | 1.16 | 0.54 | 2.25 | 1.05 | 1.19 | 3.39 | 2.23 | 3.30 | 0.70 | 1.11 | |
3 | 0.81 | 1.22 | 2.66 | 2.70 | 1.25 | 1.08 | 1.02 | 0.96 | 2.30 | 3.01 | 0.91 | 0.84 | 0.99 | 0.90 | |
4 | 1.23 | 1.01 | 0.67 | 2.21 | 0.90 | 1.09 | 1.29 | 1.37 | 0.85 | 3.97 | 1.21 | 0.71 | 1.01 | 1.05 | |
5 | 1.24 | 0.96 | 3.46 | 0.84 | 2.19 | 2.67 | 0.74 | 1.06 | 1.26 | 0.83 | 0.96 | 10.05 | 1.06 | 0.89 | |
6 | 1.09 | 0.90 | 1.28 | 0.91 | 0.93 | 3.04 | 1.33 | 1.22 | 1.17 | 0.90 | 2.17 | 0.96 | 1.09 | 0.90 | |
7 | 0.89 | 1.20 | 1.08 | 3.17 | 1.29 | 2.35 | 1.03 | 0.78 | 1.04 | 0.74 | 2.82 | 0.81 | 1.01 | 1.26 | |
8 | 0.97 | 4.84 | 1.06 | 1.16 | 5.73 | 3.68 | 0.99 | 0.99 | 0.62 | 2.14 | 2.67 | 0.76 | 0.98 | 1.10 | |
9 | 1.16 | 2.20 | 0.75 | 1.14 | 3.16 | 2.43 | 0.86 | 1.21 | 0.93 | 1.02 | 0.81 | 2.68 | 0.82 | 1.17 | |
10 | 0.80 | 0.82 | 1.20 | 3.44 | 1.72 | 1.29 | 0.66 | 2.13 | 0.98 | 1.07 | 1.16 | 1.10 | 1.07 | 1.02 | |
11 | 1.36 | 0.96 | 1.17 | 0.89 | 0.92 | 0.90 | 1.38 | 0.71 | 1.81 | 3.80 | 0.54 | 1.01 | 1.16 | 1.19 | |
12 | 1.89 | 2.43 | 4.72 | 1.11 | 2.52 | 0.63 | 0.98 | 1.08 | 1.05 | 1.19 | 5.00 | 1.01 | 0.72 | 0.71 | |
13 | 1.69 | 0.86 | 1.06 | 2.12 | 1.25 | 1.00 | 1.13 | 1.13 | 0.69 | 1.15 | 5.49 | 0.85 | 2.27 | 0.50 | |
14 | 1.21 | 1.09 | 1.00 | 0.85 | 3.56 | 1.22 | 0.90 | 4.01 | 0.77 | 0.92 | 0.94 | 4.05 | 1.97 | 1.05 | |
15 | 0.90 | 1.31 | 1.34 | 0.91 | 1.35 | 1.06 | 0.96 | 1.20 | 0.95 | 6.10 | 0.99 | 1.15 | 1.16 | 0.93 | |
16 | 1.23 | 0.89 | 1.58 | 0.75 | 1.02 | 2.22 | 0.84 | 1.19 | 1.25 | 2.99 | 1.07 | 1.02 | 0.85 | 1.12 | |
17 | 3.37 | 1.18 | 2.40 | 1.19 | 1.22 | 0.79 | 0.84 | 1.03 | 1.06 | 3.18 | 1.13 | 0.81 | 0.81 | 1.17 | |
18 | 2.44 | 3.76 | 2.11 | 1.27 | 0.99 | 1.01 | 1.20 | 1.15 | 0.79 | 2.56 | 0.58 | 0.99 | 0.81 | 0.95 | |
19 | 1.13 | 2.14 | 1.21 | 0.90 | 0.99 | 1.04 | 1.07 | 4.69 | 1.00 | 1.15 | 0.98 | 0.99 | 3.31 | 1.07 | |
20 | 1.18 | 1.92 | 1.00 | 0.62 | 2.28 | 0.96 | 2.30 | 0.84 | 0.82 | 7.72 | 3.30 | 1.16 | 0.77 | 1.14 | |
21 | 1.21 | 1.04 | 0.93 | 1.01 | 1.00 | 1.11 | 1.23 | 0.97 | 0.82 | 0.85 | 4.48 | 1.61 | 1.19 | 1.91 | |
22 | 0.72 | 1.02 | 1.05 | 1.20 | 1.20 | 0.95 | 1.13 | 0.78 | 2.07 | 2.55 | 2.77 | 0.91 | 0.94 | 14.48 |
Loop | Outliers | Month | Loop | Outliers | Month |
---|---|---|---|---|---|
FLOW_1 | 0 | FLOW_12 | 1 | 3 | |
FLOW_2 | 2 | 10, 12 | LVL_1 | 0 | |
FLOW_3 | 0 | LVL_2 | 3 | 5, 8, 12 | |
FLOW_4 | 1 | 10 | PRESS_1 | 0 | |
FLOW_5 | 1 | 3 | TEMP_1 | 0 | |
FLOW_6 | 1 | 6 | TEMP_2 | 2 | 1, 10 |
FLOW_7 | 1 | 4 | TEMP_3 | 1 | 2 |
FLOW_8 | 2 | 2, 6 | TEMP_4 | 2 | 8, 13 |
FLOW_9 | 1 | 5 | TEMP_5 | 1 | 11 |
FLOW_10 | 1 | 4 | TEMP_6 | 1 | 11 |
FLOW_11 | 1 | 10 | TEMP_7 | 0 |
Loop | Type | Mode | |||||
---|---|---|---|---|---|---|---|
1 | FLOW | CAS | 0.006 | 0.168 | 0.060 | 0.131 | 0.051 |
2 | CAS | 0.010 | 0.203 | 0.045 | 0.107 | 0.091 | |
3 | AUTO | 0.009 | 0.181 | 0.038 | 0.047 | 0.067 | |
4 | CAS | −0.006 | 0.160 | 0.073 | 0.119 | 0.044 | |
5 | CAS | 0.005 | 0.089 | 0.037 | 0.084 | 0.038 | |
6 | RCAS | −0.022 | 0.135 | 0.054 | 0.079 | 0.035 | |
7 | CAS | −0.014 | 0.125 | 0.025 | 0.043 | 0.017 | |
8 | RCAS/AUTO | 0.000 | 0.145 | 0.137 | 0.367 | 0.022 | |
9 | RCAS | −0.040 | 0.111 | 0.064 | 0.073 | 0.052 | |
10 | RCAS | −0.030 | 0.098 | 0.054 | 0.109 | 0.055 | |
11 | AUTO | 0.017 | 0.130 | 0.018 | 0.042 | 0.025 | |
12 | AUTO | 0.026 | 0.146 | 0.035 | 0.224 | 0.049 | |
13 | LVL | RCAS/AUTO | 0.018 | 0.239 | 0.187 | 0.331 | 0.134 |
14 | RCAS/AUTO | −0.020 | 0.163 | 0.179 | 0.539 | 0.061 | |
15 | PRESS | MAN | 0.157 | 0.159 | 0.383 | 0.566 | 0.194 |
16 | TEMP | RCAS | 0.004 | 0.243 | 0.123 | 0.181 | 0.124 |
17 | RCAS | 0.025 | 0.145 | 0.041 | 0.383 | 0.046 | |
18 | RCAS | −0.007 | 0.155 | 0.038 | 0.067 | 0.040 | |
19 | RCAS | −0.011 | 0.204 | 0.125 | 0.173 | 0.093 | |
20 | AUTO | −0.012 | 0.156 | 0.091 | 0.202 | 0.046 | |
21 | RCAS | 0.021 | 0.254 | 0.313 | 0.352 | 0.153 | |
22 | RCAS | −0.080 | 0.153 | 0.073 | 0.120 | 0.110 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domański, P.D.; Jankowski, R.; Dziuba, K.; Góra, R. Assessing Control Sustainability Using L-Moment Ratio Diagrams. Electronics 2023, 12, 2377. https://doi.org/10.3390/electronics12112377
Domański PD, Jankowski R, Dziuba K, Góra R. Assessing Control Sustainability Using L-Moment Ratio Diagrams. Electronics. 2023; 12(11):2377. https://doi.org/10.3390/electronics12112377
Chicago/Turabian StyleDomański, Paweł D., Robert Jankowski, Krzysztof Dziuba, and Radosław Góra. 2023. "Assessing Control Sustainability Using L-Moment Ratio Diagrams" Electronics 12, no. 11: 2377. https://doi.org/10.3390/electronics12112377
APA StyleDomański, P. D., Jankowski, R., Dziuba, K., & Góra, R. (2023). Assessing Control Sustainability Using L-Moment Ratio Diagrams. Electronics, 12(11), 2377. https://doi.org/10.3390/electronics12112377