Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems
Abstract
:1. Introduction
1.1. Related Work
1.2. Research Contributions
- This paper addresses the challenge of designing a low-complexity DL TS m-MIMO system in the FDD transmission mode with limited CCT when users span different channel covariance matrices.
- This paper proposes a feasible solution for CSI estimation using a low-complexity DL TS to maximize the achievable sum rate of FDD systems with limited CCT using a waterfilling power allocation method.
- This paper investigates the performance of FDD m-MIMO systems taking into account the achievable sum rate maximization with short CCT, which is an essential metric for many wireless systems applications, in contrast to earlier research studies that have considered the MSE metric only.
- This paper explores the potential sum rate performance with a zero-forcing (ZFBF) precoder, which can effectively mitigate interference at high SNR, in contrast to conventional precoding methods such as the matched filter.
- This paper conducts comparisons for the rate performances between the proposed low-complexity DL TS design and existing methods for DL sequence optimization. The comparisons are presented using a one ring (OR) channel model [34,42,43] and a Laplacian [36,44] physical channel model with uniform planar array (UPA) configuration. The results demonstrate that the proposed low-complexity TS design considerably improves the DL rate over the state-of-the-art TS designs. This achievement signifies the importance of using the proposed approach in practical systems with URLLC.
2. System Model Discussion
3. CSI Estimation Process
Problem Formulation
4. Proposed Low Complexity DL TS Design Based on a Waterfilling Algorithm
5. Channel Correlation Models
6. Performance Evaluation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
m-MIMO | Massive multiple-input multiple-output |
TS | Training sequence |
FDD | Frequency-division-duplex |
CCT | Channel coherence time |
URLLC | Ultra-reliable and low-latency communications |
BS | Base station |
CSI | Channel state information |
TDD | Time-division-duplex |
UL | Uplink |
SNR | Signal-to-noise ratio |
LTE | Long-term evolution |
MMSE | Minimum-mean-square-error |
ZFBF | Zero-forcing |
OFDM | Orthogonal frequency-division multiple |
DPC | Dirty paper coding |
CCM | Channel covariance matrix |
References
- Cisco.Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 20172022, February 2019. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.pdf (accessed on 12 April 2023).
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef]
- Han, C.; Jornet, J.M.; Akyildiz, I. Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- De Carvalho, E.; Ali, A.; Amiri, A.; Angjelichinoski, M.; Heath, R.W. Non-Stationarities in Extra-Large-Scale Massive MIMO. IEEE Wirel. Commun. 2020, 27, 74–80. [Google Scholar] [CrossRef]
- Marzetta, T.L.; Larsson, E.G.; Yang, H.; Ngo, H.Q. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 2013, 61, 1436–1449. [Google Scholar]
- Lu, L.; Li, G.Y.; Swindlehurst, A.L.; Ashikhmin, A.; Zhang, R. An overview of massive MIMO: Benefits and challenges. IEEE J. Sel. Top. Signal Process. 2014, 8, 742–758. [Google Scholar] [CrossRef]
- Parkvall, S.; Dahlman, E.; Furuskar, A.; Frenne, M. NR: The new 5G radio access technology. IEEE Commun. Stand. Mag. 2017, 1, 24–30. [Google Scholar] [CrossRef]
- Jose, J.; Ashikhmin, A.; Marzetta, T.L.; Vishwanath, S. Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Trans. Wirel. Commun. 2011, 10, 2640–2651. [Google Scholar] [CrossRef]
- Hoydis, J.; Ten Brink, S.; Debbah, M. Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? IEEE J. Sel. Areas Commun. 2013, 31, 160–171. [Google Scholar] [CrossRef]
- Yang, H.; Marzetta, T.L. Performance of Conjugate and Zero-Forcing Beamforming in Large-Scale Antenna Systems. IEEE J. Sel. Areas Commun. 2013, 31, 172–179. [Google Scholar] [CrossRef]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef]
- Al-hubaishi, A.S.; Noordin, N.K.; Sali, A.; Subramaniam, S.; Mohammed Mansoor, A. An Efficient Pilot Assignment Scheme for Addressing Pilot Contamination in Multicell Massive MIMO Systems. Electronics 2019, 8, 372. [Google Scholar] [CrossRef]
- Omer, D.; Hussein, M.; Mina, L. Ergodic Capacity for Evaluation of Mobile System Performance. J. Eng. 2020, 26, 135–148. [Google Scholar] [CrossRef]
- Marzetta, T.L. Massive MIMO: An introduction. Bell Labs Tech. J. 2015, 20, 11–22. [Google Scholar] [CrossRef]
- Kaltenberger, F.; Jiang, H.; Guillaud, M.; Knopp, R. Relative channel reciprocity calibration in MIMO/TDD systems. In Proceedings of the Future Network & Mobile Summit, Florence, Italy, 16–18 June 2010; pp. 1–10. [Google Scholar]
- Björnson, E.; Hoydis, J.; Kountouris, M.; Debbah, M. Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits. In Proceedings of the 18th International Conference on Digital Signal Processing (DSP), Fira, Greece, 1–3 July 2013; pp. 1–6. [Google Scholar]
- Mi, D.; Dianati, M.; Zhang, L.; Muhaidat, S.; Tafazolli, R. Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Trans. Commun. 2017, 65, 3734–3749. [Google Scholar] [CrossRef]
- Vieira, J.; Rusek, F.; Edfors, O.; Malkowsky, S.; Liu, L.; Tufvesson, F. Reciprocity calibration for massive MIMO: Proposal, modeling, and validation. IEEE Trans. Wirel. Commun. 2017, 16, 3042–3056. [Google Scholar] [CrossRef]
- Ericsson. Ericsson Mobility Report: On the Pulse of the Network Society. Technical Report 2016. Available online: https://www.ericsson.com/assets/local/mobility-report/documents/2016/ericsson-mobility-report-november-2016.pdf (accessed on 12 April 2023).
- Hassibi, B.; Hochwald, B.M. How much training is needed in multiple-antenna wireless links? IEEE Trans. Inf. Theory 2003, 49, 951–963. [Google Scholar] [CrossRef]
- Katselis, D.; Kofidis, E.; Theodoridis, S. On training optimization for estimation of correlated MIMO channels in the presence of multiuser interference. IEEE Trans. Signal Process. 2008, 56, 4892–4904. [Google Scholar] [CrossRef]
- Björnson; Larsson, E.; Marzetta, T.L. Massive MIMO: Ten myths and one critical question. IEEE Commun. Mag. 2016, 54, 114–123. [Google Scholar] [CrossRef]
- Huh, H.; Tulino, A.M.; Caire, G. Network MIMO with linear zero-forcing beamforming: Large system analysis, impact of channel estimation, and reduced-complexity scheduling. IEEE Trans. Inf. Theory 2012, 58, 2911–2934. [Google Scholar] [CrossRef]
- Kotecha, J.H.; Sayeed, A.M. Transmit signal design for optimal estimation of correlated MIMO channels. IEEE Trans. Signal Process. 2004, 52, 546–557. [Google Scholar] [CrossRef]
- Noh, S.; Zoltowski, M.D.; Sung, Y.; Love, D.J. Pilot Beam Pattern Design for Channel Estimation in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 787–801. [Google Scholar] [CrossRef]
- Choi, J.; Love, D.J.; Bidigare, P. Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE J. Sel. Top. Signal Process. 2014, 8, 802–814. [Google Scholar] [CrossRef]
- So, J.; Kim, D.; Lee, Y.; Sung, Y. Pilot Signal Design for Massive MIMO Systems: A Received Signal-To-Noise-Ratio-Based Approach. IEEE Signal Process. Lett. 2015, 22, 549–553. [Google Scholar] [CrossRef]
- Rao, X.; Lau, V.K. Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Massive MIMO Systems. IEEE Trans. Signal Process. 2014, 62, 3261–3271. [Google Scholar]
- Gao, Z.; Dai, L.; Dai, W.; Shim, B.; Wang, Z. Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO. IEEE Trans. Commun. 2016, 64, 601–617. [Google Scholar] [CrossRef]
- Han, Y.; Lee, J.; Love, D.J. Compressed Sensing-Aided Downlink Channel Training for FDD Massive MIMO Systems. IEEE Trans. Commun. 2017, 65, 2852–2862. [Google Scholar] [CrossRef]
- Adhikary, A.; Nam, J.; Ahn, J.Y.; Caire, G. Joint Spatial Division and Multiplexing: The Large-Scale Array Regime. IEEE Trans. Inf. Theory 2013, 59, 6441–6463. [Google Scholar] [CrossRef]
- Nam, J.; Caire, G.; Ha, J. On the role of transmit correlation diversity in multiuser MIMO systems. IEEE Trans. Inf. Theory 2017, 63, 336–354. [Google Scholar] [CrossRef]
- Jiang, Z.; Molisch, A.F.; Caire, G.; Niu, Z. Achievable Rates of FDD Massive MIMO Systems With Spatial Channel Correlation. IEEE Trans. Wirel. Commun. 2015, 14, 2868–2882. [Google Scholar] [CrossRef]
- Tomasi, B.; Decurninge, A.; Guillaud, M. SNOPS: Short non-orthogonal pilot sequences for downlink channel state estimation in FDD massive MIMO. In Proceedings of the IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Bazzi, S.; Xu, W. Downlink Training Sequence Design for FDD Multiuser Massive MIMO Systems. IEEE Trans. Signal Process. 2017, 65, 4732–4744. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.D. Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems. IEEE Trans. Signal Process. 2019, 67, 2334–2346. [Google Scholar] [CrossRef]
- Alsabah, M.; Vehkapera, M.; O’Farrell, T. Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems. IEEE Access 2020, 8, 108731–108747. [Google Scholar] [CrossRef]
- Bazzi, S.; Xu, W. Low-Complexity Channel Estimation in Correlated Massive MIMO Channels. In Proceedings of the WSA 2018; 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 March 2018; pp. 1–6. [Google Scholar]
- Jakes, W.C.; Cox, D.C. Microwave Mobile Communications; Wiley-IEEE Press: Piscataway, NJ, USA, 1994. [Google Scholar]
- Shiu, D.S.; Foschini, G.J.; Gans, M.J.; Kahn, J.M. Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Trans. Commun. 2000, 48, 502–513. [Google Scholar] [CrossRef]
- Molisch, A.F. Wireless Communications; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 34. [Google Scholar]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Abdulhussain, S.H.; Eissa, M.R.; Al-Baidhani, A.; Noordin, N.K.; Sait, S.M.; Al-Utaibi, K.A.; Hashim, F. 6G wireless communications networks: A comprehensive survey. IEEE Access 2021, 9, 148191–148243. [Google Scholar] [CrossRef]
- Abdulameer, I.H.; Al-Dabbagh, R.D. Self-adaptive Differential Evolution based Optimized MIMO Beamforming 5G Networks. Iraqi J. Sci. 2022, 63, 3628–3639. [Google Scholar] [CrossRef]
- Salman, M.I.; Abdulhasan, M.Q.; Ng, C.K.; Noordin, N.K.; Sali, A.; Mohd Ali, B. Radio resource management for green 3GPP long term evolution cellular networks: Review and trade-offs. IETE Tech. Rev. 2013, 30, 257–269. [Google Scholar] [CrossRef]
- Abdulhasan, M.Q.; Salman, M.I.; Ng, C.K.; Noordin, N.K.; Hashim, S.J.; Hashim, F. Review of Channel Quality Indicator Estimation Schemes for Multi-User MIMO in 3GPP LTE/LTE-A Systems. KSII Trans. Internet Inf. Syst. 2014, 8. [Google Scholar] [CrossRef]
- Naser, M.A.; Salman, M.I.; Alsabah, M. The role of correlation in the performance of massive MIMO systems. Appl. Syst. Innov. 2021, 4, 54. [Google Scholar] [CrossRef]
- Abdul-Hadi, A.M.; Naser, M.A.; Alsabah, M.; Abdulhussain, S.H.; Mahmmod, B.M. Performance evaluation of frequency division duplex (FDD) massive multiple input multiple output (MIMO) under different correlation models. PeerJ Comput. Sci. 2022, 8, e1017. [Google Scholar] [CrossRef]
- Munadel, A.; Hamza, E.K. Simulation and Analysis of the OFDM Transceiver Based Commutation System. J. Eng. 2020, 26, 131–140. [Google Scholar] [CrossRef]
- Abdulmajeed, M.M.S.; Omran, B.M. Pilot Based Channel Estimation and Synchronization in OFDM System. J. Eng 2020, 26, 50–59. [Google Scholar] [CrossRef]
- Bazzi, S.; Xu, W. On the Amount of Downlink Training in Correlated Massive MIMO Channels. IEEE Trans. Signal Process. 2018, 66, 2286–2299. [Google Scholar] [CrossRef]
- Park, B.; Wong, T.F. Training sequence optimization in MIMO systems with colored noise. In Proceedings of the IEEE Military Communications Conference, MILCOM 2003, Boston, MA, USA, USA, 13–16 October 2003; Volume 1, pp. 135–140. [Google Scholar]
- Caire, G.; Shamai, S. On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. Inf. Theory 2003, 49, 1691–1706. [Google Scholar] [CrossRef]
- Gesbert, D.; Kountouris, M.; Heath, R.W.; Chae, C.B.; Salzer, T. Shifting the MIMO paradigm. IEEE Signal Process. Mag. 2007, 24, 36–46. [Google Scholar] [CrossRef]
- Wagner, S.; Couillet, R.; Debbah, M.; Slock, D.T. Large System Analysis of Linear Precoding in Correlated MISO Broadcast Channels Under Limited Feedback. IEEE Trans. Inf. Theory 2012, 58, 4509–4537. [Google Scholar] [CrossRef]
- Peel, C.B.; Hochwald, B.M.; Swindlehurst, A.L. A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: Channel inversion and regularization. IEEE Trans. Commun. Jan. 2005, 53, 195–202. [Google Scholar] [CrossRef]
- Yoo, T.; Goldsmith, A. On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming. IEEE J. Sel. Areas Commun. 2006, 24, 528–541. [Google Scholar]
- Kay, S. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Biguesh, M.; Gershman, A.B. Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals. IEEE Trans. Signal Process. 2006, 54, 884–893. [Google Scholar] [CrossRef]
- Liu, Y.; Wong, T.F.; Hager, W.W. Training Signal Design for Estimation of Correlated MIMO Channels With Colored Interference. IEEE Trans. Signal Process. 2007, 55, 1486–1497. [Google Scholar] [CrossRef]
- Pang, J.; Li, J.; Zhao, L.; Lu, Z. Optimal Training Sequences for MIMO Channel Estimation with Spatial Correlation. In Proceedings of the IEEE Vehicular Technology Conference, Baltimore, MD, USA, 30 September–3 October 2007; pp. 651–655. [Google Scholar]
- Katselis, D.; Kofidis, E.; Theodoridis, S. Training-based estimation of correlated MIMO fading channels in the presence of colored interference. Signal Process. 2007, 87, 2177–2187. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Chizhik, D.; Ling, J.; Wolniansky, P.W.; Valenzuela, R.A.; Costa, N.; Huber, K. Multiple-input-multiple-output measurements and modeling in Manhattan. IEEE J. Sel. Areas Commun. 2003, 21, 321–331. [Google Scholar] [CrossRef]
- Yu, K.; Bengtsson, M.; Ottersten, B.; McNamara, D.; Karlsson, P.; Beach, M. Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE Trans. Veh. Technol. 2004, 53, 655–665. [Google Scholar] [CrossRef]
- Wallace, J.W.; Jensen, M.A. Measured characteristics of the MIMO wireless channel. In Proceedings of the IEEE 54th Vehicular Technology Conference, VTC Fall 2001, Proceedings (Cat. No.01CH37211), Atlantic City, NJ, USA, 7–11 October 2001; Volume 4, pp. 2038–2042. [Google Scholar]
Parameters | Symbol | Value |
---|---|---|
Number of BS antennas | N | 128, 256 |
Number of users | K | 10 |
Azimuth angular spread | ||
Antenna element separation | ||
Coherence block length | 100 symbols | |
Training power | −15 dB to 20 dB | |
BS height | h | 30 m |
Ring radius | s | 30 m |
Users distance | 200 m | |
BS configurations | BS | UPA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naser, M.A.; Abdul-Hadi, A.M.; Alsabah, M.; Mahmmod, B.M.; Majeed, A.; Abdulhussain, S.H. Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems. Electronics 2023, 12, 2494. https://doi.org/10.3390/electronics12112494
Naser MA, Abdul-Hadi AM, Alsabah M, Mahmmod BM, Majeed A, Abdulhussain SH. Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems. Electronics. 2023; 12(11):2494. https://doi.org/10.3390/electronics12112494
Chicago/Turabian StyleNaser, Marwah Abdulrazzaq, Alaa M. Abdul-Hadi, Muntadher Alsabah, Basheera M. Mahmmod, Ammar Majeed, and Sadiq H. Abdulhussain. 2023. "Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems" Electronics 12, no. 11: 2494. https://doi.org/10.3390/electronics12112494
APA StyleNaser, M. A., Abdul-Hadi, A. M., Alsabah, M., Mahmmod, B. M., Majeed, A., & Abdulhussain, S. H. (2023). Downlink Training Sequence Design Based on Waterfilling Solution for Low-Latency FDD Massive MIMO Communications Systems. Electronics, 12(11), 2494. https://doi.org/10.3390/electronics12112494