Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Network Architecture
2.3. Focal Self-Attention Module
2.4. Multi-Level Feature Fusion Module
2.5. Loss Function
3. Experiments and Results
3.1. Experimental Settings
3.2. Evaluation Metrics
3.3. Comparison Methods
3.4. Visual Comparison Results
3.5. Quantitative Analysis
3.6. Ablative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Ye, Z.; Mei, L.; Yang, W.; Hou, Y.; Shen, S.; Ouyang, W.; Ye, Z. Progressive Context-Aware Aggregation Network Combining Multi-Scale and Multi-Level Dense Reconstruction for Building Change Detection. Remote Sens. 2023, 15, 1958. [Google Scholar] [CrossRef]
- Islam, K.A.; Uddin, M.S.; Kwan, C.; Li, J. Flood detection using multi-modal and multi-temporal images: A comparative study. Remote Sens. 2020, 12, 2455. [Google Scholar] [CrossRef]
- Wang, D.C.; Zhao, F.; Wang, C.; Wang, H.Y.; Zheng, F.J.; Chen, X.N. Y-Net: A Multiclass Change Detection Network for Bi-temporal Remote Sensing Images. Int. J. Remote Sens. 2022, 43, 565–592. [Google Scholar] [CrossRef]
- Kwan, C. Methods and challenges using multispectral and hyperspectral images for practical change detection applications. Information 2019, 10, 353. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Xu, C.; Mei, L.Y.; Yao, Y.X.; Liu, C. LPSO: Multi-Source Image Matching Considering the Description of Local Phase Sharpness Orientation. IEEE Photonics J. 2022, 14, 7811109. [Google Scholar] [CrossRef]
- Javed, A.; Jung, S.; Lee, W.H.; Han, Y. Object-Based Building Change Detection by Fusing Pixel-Level Change Detection Results Generated from Morphological Building Index. Remote Sens. 2020, 12, 2952. [Google Scholar] [CrossRef]
- Guo, X.P.; Meng, L.Y.; Mei, L.Y.; Weng, Y.Y.; Tong, H.Q. Multi-focus image fusion with Siamese self-attention network. IET Image Process. 2020, 14, 1339–1346. [Google Scholar] [CrossRef]
- Gong, M.G.; Zhan, T.; Zhang, P.Z.; Miao, Q.G. Superpixel-Based Difference Representation Learning for Change Detection in Multispectral Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2658–2673. [Google Scholar] [CrossRef]
- Seo, D.K.; Kim, Y.H.; Eo, Y.D.; Park, W.Y.; Park, H.C. Generation of Radiometric, Phenological Normalized Image Based on Random Forest Regression for Change Detection. Remote Sens. 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Sun, Y.; Han, X.; Zhang, Y.; Zhang, L.; Hu, Y. AMIO-Net: An Attention-Based Multiscale Input–Output Network for Building Change Detection in High-Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2079–2093. [Google Scholar] [CrossRef]
- Peng, D.F.; Bruzzone, L.; Zhang, Y.J.; Guan, H.Y.; Ding, H.Y.; Huang, X. SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5891–5906. [Google Scholar] [CrossRef]
- Xiao, P.F.; Yuan, M.; Zhang, X.L.; Feng, X.Z.; Guo, Y.W. Cosegmentation for Object-Based Building Change Detection from High-Resolution Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1587–1603. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, M.; He, F.; Guo, Y.; Sun, G.; Chen, J. FODA: Building Change Detection in High-Resolution Remote Sensing Images Based on Feature–Output Space Dual-Alignment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8125–8134. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, B.; Zhang, Y.; Liu, Z.; Zheng, X. Building Change Detection in Remote Sensing Images Based on Dual Multi-Scale Attention. Remote Sens. 2022, 14, 5405. [Google Scholar] [CrossRef]
- Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M.T. A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6497–6504. [Google Scholar] [CrossRef]
- Zhong, C.; Mu, X.; He, X.; Wang, J.; Zhu, M. SAR target image classification based on transfer learning and model compression. IEEE Geosci. Remote Sens. Lett. 2018, 16, 412–416. [Google Scholar] [CrossRef]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep transfer learning for few-shot SAR image classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Dumitru, C.O.; Pan, Z.; Lei, B.; Datcu, M. Classification of large-scale high-resolution SAR images with deep transfer learning. IEEE Geosci. Remote Sens. Lett. 2020, 18, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Li, W. Ship classification in high-resolution SAR images via transfer learning with small training dataset. Sensors 2018, 19, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, C.; Chou, B.; Hagen, L.; Perez, D.; Shen, Y.; Li, J.; Koperski, K. Change detection using Landsat and Worldview images. In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV, 2019; SPIE: Bellingham, WA, USA, 2019; pp. 328–342. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, L.Y.; Yu, Y.L.; Shen, H.; Weng, Y.Y.; Liu, Y.; Wang, D.; Liu, S.; Zhou, F.L.; Lei, C. Adversarial Multiscale Feature Learning Framework for Overlapping Chromosome Segmentation. Entropy 2022, 24, 522. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Guo, H.; Zhou, J.; Zhao, T.; Yu, Q.; Chen, Y.; Wang, Z. Tiny object detection with context enhancement and feature purification. Expert Syst. Appl. 2023, 211, 118665. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z.W. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Zhang, P.; Dai, X.; Xiao, B.; Yuan, L.; Gao, J. Focal self-attention for local-global interactions in vision transformers. arXiv 2021, arXiv:2107.00641. [Google Scholar]
- Li, Q.Y.; Zhong, R.F.; Du, X.; Du, Y. TransUNetCD: A Hybrid Transformer Network for Change Detection in Optical Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5622519. [Google Scholar] [CrossRef]
- Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: New York, NY, USA, 2018; pp. 4063–4067. [Google Scholar]
- Alcantarilla, P.F.; Stent, S.; Ros, G.; Arroyo, R.; Gherardi, R. Street-view change detection with deconvolutional networks. Auton. Robot. 2018, 42, 1301–1322. [Google Scholar] [CrossRef]
- Papadomanolaki, M.; Vakalopoulou, M.; Karantzalos, K. A deep multitask learning framework coupling semantic segmentation and fully convolutional LSTM networks for urban change detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7651–7668. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L.; Shangguan, B.; Huang, L.; Liu, G. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
Method | Precision (%) | Recall (%) | F1-Score (%) | IOU (%) |
---|---|---|---|---|
FC-EF | 79.91 | 82.84 | 81.35 | 68.56 |
FC-Siam-conc | 81.84 | 83.55 | 82.68 | 70.48 |
FC-Siam-diff | 78.60 | 89.30 | 83.61 | 71.84 |
CDNet | 84.21 | 87.10 | 85.63 | 74.87 |
LUNet | 85.69 | 90.99 | 88.73 | 79.75 |
IFNet | 85.37 | 90.24 | 87.74 | 78.16 |
BITNet | 87.32 | 91.41 | 89.32 | 80.70 |
Ours | 92.30 | 90.96 | 91.62 | 84.54 |
Method | Precision (%) | Recall (%) | F1-Score (%) | IOU (%) |
---|---|---|---|---|
FC-EF | 70.43 | 92.31 | 79.90 | 66.53 |
FC-Siam-conc | 63.80 | 91.81 | 75.28 | 60.36 |
FC-Siam-diff | 65.98 | 94.30 | 77.63 | 63.44 |
CDNet | 81.75 | 88.69 | 85.08 | 74.03 |
LUNet | 66.32 | 93.06 | 77.45 | 63.19 |
IFNet | 86.51 | 87.69 | 87.09 | 77.14 |
BITNet | 82.35 | 92.59 | 87.17 | 77.26 |
Ours | 90.86 | 88.08 | 89.45 | 80.91 |
Dataset | MLFF | Precision (%) | Recall (%) | F1-Score (%) | IOU (%) |
---|---|---|---|---|---|
LEVIR-CD | × | 90.73 | 88.89 | 89.80 | 81.49 |
√ | 92.30 | 90.96 | 91.62 | 84.54 | |
WHU-CD | × | 91.08 | 85.36 | 88.13 | 78.78 |
√ | 90.86 | 88.08 | 89.45 | 80.91 |
Dataset | Precision (%) | Recall (%) | F1-Score (%) | IOU (%) |
---|---|---|---|---|
LEVIR-CD | 45.70 | 4.78 | 8.60 | 4.53 |
WHU-CD | 58.98 | 53.91 | 56.33 | 39.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, P.; Mei, L.; Ye, Z.; Wang, Y.; Zhang, Q.; Hong, B.; Yin, X.; Yang, W. Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion. Electronics 2023, 12, 2796. https://doi.org/10.3390/electronics12132796
Shen P, Mei L, Ye Z, Wang Y, Zhang Q, Hong B, Yin X, Yang W. Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion. Electronics. 2023; 12(13):2796. https://doi.org/10.3390/electronics12132796
Chicago/Turabian StyleShen, Peiquan, Liye Mei, Zhaoyi Ye, Ying Wang, Qi Zhang, Bo Hong, Xiliang Yin, and Wei Yang. 2023. "Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion" Electronics 12, no. 13: 2796. https://doi.org/10.3390/electronics12132796
APA StyleShen, P., Mei, L., Ye, Z., Wang, Y., Zhang, Q., Hong, B., Yin, X., & Yang, W. (2023). Building Change Detection in Remote Sensing Imagery with Focal Self-Attention and Multi-Level Feature Fusion. Electronics, 12(13), 2796. https://doi.org/10.3390/electronics12132796