A New Method for Graph-Based Representation of Text in Natural Language Processing
Abstract
:1. Introduction
- We obtain and process real long texts such as full books—this approach aims to extend the possibilities of text analysis and representation, which were previously limited to short fragments;
- We propose an innovative approach based on graph representations, taking into account both the local context and global relationships between words—graphs are a structural reflection of the text, which can provide new insights and information that are not taken into account in traditional methods of text representation;
- We find and use common cliques of words in graphs representing documents, which is a new perspective in text analysis—cliques are collections of words that occur together in context that can have semantic meaning, which is a new perspective in text analysis and can provide additional information when classifying text;
- We assess the effectiveness of classification by comparing the effectiveness of text classification based on a graph representation with the results of traditional methods—we use classification measures such as accuracy, precision, recall and F1-score to assess the new method’s effectiveness compared to existing approaches.
2. Related Works
3. Theoretical Background
3.1. Project Gunteberg
3.2. Natural Language Processing
3.3. Text Representation
3.4. Graph Representation
3.5. Classification
4. Research Methodology
- max—clique weight is the largest number of occurrences of two elements in the text from all elements of the clique;
- min—clique weight is the smallest number of occurrences of two elements in the text of all clique elements;
- sum—clique weight is the sum of the number of occurrences of two elements in the text from all clique elements.
- true—common elements were determined only in the class;
- false—set common elements in all documents.
- all—all elements of the set;
- clique—cliques containing more than two items.
5. Experiments and Results
5.1. Text Representation
5.2. Classification
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bales, M.E.; Wright, D.N.; Oxley, P.R.; Wheeler, T.R. Bibliometric Visualization and Analysis Software: State of the Art, Workflows, and Best Practices; Cornell University: Ithaca, NY, USA, 2020. [Google Scholar]
- Jaradeh, M.Y.; Oelen, A.; Farfar, K.E.; Prinz, M.; D’Souza, J.; Kismihók, G.; Stocker, M.; Auer, S. Open research knowledge graph: Next generation infrastructure for semantic scholarly knowledge. In Proceedings of the 10th International Conference on Knowledge Capture, Marina Del Rey, CA, USA, 19–21 November 2019; pp. 243–246. [Google Scholar]
- Ali, S.M.; Noorian, Z.; Bagheri, E.; Ding, C.; Al-Obeidat, F. Topic and sentiment aware microblog summarization for twitter. J. Intell. Inf. Syst. 2020, 54, 129–156. [Google Scholar] [CrossRef]
- Wanigasooriya, A.; Silva, W.P.D. Automated Text Classification of Library Books into the Dewey Decimal Classification (DDC); University of Kelaniya: Kelaniya, Sri Lanka, 2021. [Google Scholar]
- Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science 2015, 349, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Liddy, E.D. Natural Language Processing; Syracuse University: Syracuse, NY, USA, 2001. [Google Scholar]
- Sharifi, B.; Hutton, M.A.; Kalita, J.K. Experiments in microblog summarization. In Proceedings of the 2010 IEEE Second International Conference on Social Computing, Minneapolis, MN, USA, 20–22 August 2010; pp. 49–56. [Google Scholar]
- Mosa, M.A.; Hamouda, A.; Marei, M. Graph coloring and ACO based summarization for social networks. Expert Syst. Appl. 2017, 74, 115–126. [Google Scholar] [CrossRef]
- Mosa, M.A.; Hamouda, A.; Marei, M. Ant colony heuristic for user-contributed comments summarization. Knowl.-Based Syst. 2017, 118, 105–114. [Google Scholar] [CrossRef]
- Rumagit, R.Y.; Setiyawati, N.; Bangkalang, D.H. Comparison of graph-based and term weighting method for automatic summarization of online news. Procedia Comput. Sci. 2019, 157, 663–672. [Google Scholar] [CrossRef]
- Crossley, S.A.; Kim, M.; Allen, L.; McNamara, D. Automated summarization evaluation (ASE) using natural language processing tools. In Proceedings of the International Conference on Artificial Intelligence in Education, Chicago, IL, USA, 25–29 June 2019; pp. 84–95. [Google Scholar]
- Liang, B.; Su, H.; Gui, L.; Cambria, E.; Xu, R. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl.-Based Syst. 2022, 235, 107643. [Google Scholar] [CrossRef]
- Belwal, R.C.; Rai, S.; Gupta, A. A new graph-based extractive text summarization using keywords or topic modeling. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8975–8990. [Google Scholar] [CrossRef]
- Dai, Y.; Shou, L.; Gong, M.; Xia, X.; Kang, Z.; Xu, Z.; Jiang, D. Graph fusion network for text classification. Knowl.-Based Syst. 2022, 236, 107659. [Google Scholar] [CrossRef]
- Probierz, B.; Kozak, J.; Hrabia, A. A comparative study of classification and clustering methods from text of books. In Proceedings of the Intelligent Information and Database Systems: 14th Asian Conference, ACIIDS 2022, Ho Chi Minh City, Vietnam, 28–30 November 2022; Proceedings, Part II. Springer: Cham, Switzerland, 2022; pp. 13–25. [Google Scholar]
- Chou, C.; Chu, T. An Analysis of BERT (NLP) for Assisted Subject Indexing for Project Gutenberg. Cat. Classif. Q. 2022, 60, 807–835. [Google Scholar] [CrossRef]
- Betts, T.; Milosavljevic, M.; Oberlander, J. The utility of information extraction in the classification of books. In Proceedings of the European Conference on Information Retrieval, Rome, Italy, 2–5 April 2007; pp. 295–306. [Google Scholar]
- Brooke, J.; Hammond, A.; Hirst, G. GutenTag: An NLP-driven tool for digital humanities research in the Project Gutenberg corpus. In Proceedings of the Fourth Workshop on Computational Linguistics for Literature, Denver, CO, USA, 4 June 2015; pp. 42–47. [Google Scholar]
- Bean, R. The use of Project Gutenberg and hexagram statistics to help solve famous unsolved ciphers. In Proceedings of the 3rd International Conference on Historical Cryptology HistoCrypt 2020, Budapest, Hungary, 15–17 June 2000; Linköping University Electronic Press: Linköping, Sweden, 2020; Volume 171, pp. 31–35. [Google Scholar]
- Chowdhary, K. Fundamentals of Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kannan, S.; Gurusamy, V.; Vijayarani, S.; Ilamathi, J.; Nithya, M.; Kannan, S.; Gurusamy, V. Preprocessing techniques for text mining. Int. J. Comput. Sci. Commun. Netw. 2014, 5, 7–16. [Google Scholar]
- Webster, J.J.; Kit, C. Tokenization as the initial phase in NLP. In Proceedings of the COLING 1992 Volume 4: The 15th International Conference on Computational Linguistics, Nantes, France, 5–9 August 1992. [Google Scholar]
- Lovins, J.B. Development of a stemming algorithm. Mech. Transl. Comput. Linguist. 1968, 11, 22–31. [Google Scholar]
- Amirhosseini, M.H.; Kazemian, H. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cogn. Process. 2019, 20, 175–193. [Google Scholar] [CrossRef]
- Straková, J.; Straka, M.; Hajic, J. Open-source tools for morphology, lemmatization, POS tagging and named entity recognition. In Proceedings of the Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Baltimore, MD, USA, 22–27 June 2014; pp. 13–18. [Google Scholar]
- El-Kassas, W.S.; Salama, C.R.; Rafea, A.A.; Mohamed, H.K. Automatic text summarization: A comprehensive survey. Expert Syst. Appl. 2021, 165, 113679. [Google Scholar] [CrossRef]
- Adeva, J.G.; Atxa, J.P.; Carrillo, M.U.; Zengotitabengoa, E.A. Automatic text classification to support systematic reviews in medicine. Expert Syst. Appl. 2014, 41, 1498–1508. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Ling, G.; Yong-cheng, W. An improved TF-IDF approach for text classification. J. Zhejiang Univ.-Sci. A 2005, 6, 49–55. [Google Scholar] [CrossRef]
- Bedekar, P.P.; Bhide, S.R. Optimum coordination of directional overcurrent relays using the hybrid GA-NLP approach. IEEE Trans. Power Deliv. 2010, 26, 109–119. [Google Scholar] [CrossRef]
- Sabri, T.; El Beggar, O.; Kissi, M. Comparative study of Arabic text classification using feature vectorization methods. Procedia Comput. Sci. 2022, 198, 269–275. [Google Scholar] [CrossRef]
- Hajibabaee, P.; Malekzadeh, M.; Ahmadi, M.; Heidari, M.; Esmaeilzadeh, A.; Abdolazimi, R.; James, H., Jr. Offensive language detection on social media based on text classification. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Virtual, 26–29 January 2022; pp. 0092–0098. [Google Scholar]
- Dharma, E.M.; Gaol, F.L.; Warnars, H.; Soewito, B. The accuracy comparison among Word2vec, Glove, and Fasttext towards convolution neural network (CNN) text classification. J. Theor. Appl. Inf. Technol. 2022, 100, 31. [Google Scholar]
- Sitender; Sangeeta; Sushma, N.S.; Sharma, S.K. Effect of GloVe, Word2Vec and FastText Embedding on English and Hindi Neural Machine Translation Systems. In Proceedings of Data Analytics and Management: ICDAM 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 433–447. [Google Scholar]
- Grohe, M. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Portland, OR USA, 14–19 June 2020; pp. 1–16. [Google Scholar]
- Sakketou, F.; Ampazis, N. A constrained optimization algorithm for learning GloVe embeddings with semantic lexicons. Knowl.-Based Syst. 2020, 195, 105628. [Google Scholar] [CrossRef]
- Jatnika, D.; Bijaksana, M.A.; Suryani, A.A. Word2vec model analysis for semantic similarities in english words. Procedia Comput. Sci. 2019, 157, 160–167. [Google Scholar] [CrossRef]
- Galassi, A.; Lippi, M.; Torroni, P. Attention in natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4291–4308. [Google Scholar] [CrossRef]
- Yi, J.; Tao, J. Self-attention based model for punctuation prediction using word and speech embeddings. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7270–7274. [Google Scholar]
- Mirończuk, M.M.; Protasiewicz, J. A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 2018, 106, 36–54. [Google Scholar] [CrossRef]
- Paulheim, H. Knowledge graph refinement: A survey of approaches and evaluation methods. Semant. Web 2017, 8, 489–508. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [Google Scholar] [CrossRef]
- Hamelink, R.C. A partial characterization of clique graphs. J. Comb. Theory 1968, 5, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Bron, C.; Kerbosch, J. Algorithm 457: Finding all cliques of an undirected graph. Commun. ACM 1973, 16, 575–577. [Google Scholar] [CrossRef]
- Osman, A.H.; Barukub, O.M. Graph-based text representation and matching: A review of the state of the art and future challenges. IEEE Access 2020, 8, 87562–87583. [Google Scholar] [CrossRef]
- Liu, B.; Wu, L. Graph Neural Networks in Natural Language Processing. In Graph Neural Networks: Foundations, Frontiers, and Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 463–481. [Google Scholar]
- Widmann, N.; Verberne, S. Graph-based semi-supervised learning for text classification. In Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, Amsterdam, The Netherlands, 1–4 October 2017; pp. 59–66. [Google Scholar]
- Mallick, C.; Das, A.K.; Dutta, M.; Das, A.K.; Sarkar, A. Graph-based text summarization using modified TextRank. In Soft Computing in Data Analytics: Proceedings of International Conference on SCDA 2018; Springer: Singapore, 2019; pp. 137–146. [Google Scholar]
- Nath, N.; Lee, S.H.; McDonnell, M.D.; Lee, I. The quest for better clinical word vectors: Ontology based and lexical vector augmentation versus clinical contextual embeddings. Comput. Biol. Med. 2021, 134, 104433. [Google Scholar] [CrossRef] [PubMed]
- Gui, T.; Zou, Y.; Zhang, Q.; Peng, M.; Fu, J.; Wei, Z.; Huang, X.J. A lexicon-based graph neural network for Chinese NER. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 1040–1050. [Google Scholar]
- Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 1–41. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman & Hall: New York, NY, USA, 1984; p. 358. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, D.; Sun, L.; Yang, H.; Zhao, Z.; Zhuang, F. Lightxml: Transformer with dynamic negative sampling for high-performance extreme multi-label text classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2021; Volume 35, pp. 7987–7994. [Google Scholar]
- Tezgider, M.; Yildiz, B.; Aydin, G. Text classification using improved bidirectional transformer. Concurr. Comput. Pract. Exp. 2022, 34, e6486. [Google Scholar] [CrossRef]
- Luan, Y.; Lin, S. Research on text classification based on CNN and LSTM. In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 29–31 March 2019; pp. 352–355. [Google Scholar]
- Mangione, S.; Siino, M.; Garbo, G. Improving Irony and Stereotype Spreaders Detection using Data Augmentation and Convolutional Neural Network. In Proceedings of the CEUR Workshop Proc, Nancy, France, 12–15 September 2022; Volume 3180, pp. 2585–2593. [Google Scholar]
- Croce, D.; Garlisi, D.; Siino, M. An SVM Ensamble Approach to Detect Irony and Stereotype Spreaders on Twitter. In Proceedings of the CEUR Workshop Proc, Nancy, France, 12–15 September 2022; Volume 3180, pp. 2426–2432. [Google Scholar]
- Farha, I.A.; Oprea, S.V.; Wilson, S.; Magdy, W. Semeval-2022 task 6: Isarcasmeval, intended sarcasm detection in english and arabic. In Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), Online, 14–15 July 2022; pp. 802–814. [Google Scholar]
- Godara, J.; Batra, I.; Aron, R.; Shabaz, M. Ensemble classification approach for sarcasm detection. Behav. Neurol. 2021, 2021, 9731519. [Google Scholar] [CrossRef]
- Buda, J.; Bolonyai, F. An Ensemble Model Using N-grams and Statistical Features to Identify Fake News Spreaders on Twitter. In CLEF (Working Notes); Eötvös Loránd University: Budapest, Hungary, 2020. [Google Scholar]
- Probierz, B.; Stefański, P.; Kozak, J. Rapid detection of fake news based on machine learning methods. Procedia Comput. Sci. 2021, 192, 2893–2902. [Google Scholar] [CrossRef]
- Verma, P.; Shukla, N.; Shukla, A. Techniques of sarcasm detection: A review. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 968–972. [Google Scholar]
- Wang, M.; Adel, H.; Lange, L.; Strötgen, J.; Schütze, H. NLNDE at SemEval-2023 Task 12: Adaptive Pretraining and Source Language Selection for Low-Resource Multilingual Sentiment Analysis. arXiv 2023, arXiv:2305.00090. [Google Scholar]
- Nasir, J.A.; Khan, O.S.; Varlamis, I. Fake news detection: A hybrid CNN-RNN based deep learning approach. Int. J. Inf. Manag. Data Insights 2021, 1, 100007. [Google Scholar] [CrossRef]
Number of Elements in Set | Number of Common Elements in Classes | Number of Common Elements in All Documents |
---|---|---|
1 element | 1469 single-elements | 1757 single-elements |
2 elements | 104,383 cliques | 130,997 cliques |
3 elements | 6294 cliques | 6983 cliques |
4 elements | 643 cliques | 648 cliques |
5 elements | 74 cliques | 74 cliques |
6 elements | 5 cliques | 5 cliques |
7 elements | 2 cliques | 2 cliques |
AdaBoost | Bagging | CART | Random Forest | SVM | |
---|---|---|---|---|---|
classic_Binary | 0.97 | 0.96 | 0.91 | 0.96 | 0.97 |
classic_TF | 0.98 | 0.94 | 0.90 | 0.95 | 0.90 |
classic_TF-IDF | 0.97 | 0.94 | 0.89 | 0.96 | 0.95 |
binary_all_true | 0.95 | 0.94 | 0.87 | 0.87 | 0.79 |
binary_all_false | 0.95 | 0.90 | 0.87 | 0.85 | 0.76 |
binary_clique_true | 0.75 | 0.72 | 0.73 | 0.72 | 0.71 |
binary_clique_false | 0.75 | 0.73 | 0.75 | 0.72 | 0.70 |
sum_all_true | 0.95 | 0.91 | 0.88 | 0.86 | 0.83 |
sum_all_false | 0.95 | 0.93 | 0.88 | 0.86 | 0.84 |
sum_clique_true | 0.75 | 0.73 | 0.75 | 0.72 | 0.68 |
sum_clique_false | 0.75 | 0.72 | 0.75 | 0.71 | 0.68 |
max_all_true | 0.95 | 0.92 | 0.88 | 0.87 | 0.83 |
max_all_false | 0.95 | 0.93 | 0.87 | 0.86 | 0.84 |
max_clique_true | 0.76 | 0.73 | 0.74 | 0.72 | 0.68 |
max_clique_false | 0.75 | 0.73 | 0.74 | 0.71 | 0.68 |
min_all_true | 0.95 | 0.92 | 0.87 | 0.89 | 0.83 |
min_all_false | 0.95 | 0.91 | 0.88 | 0.87 | 0.83 |
min_clique_true | 0.74 | 0.73 | 0.73 | 0.72 | 0.72 |
min_clique_false | 0.75 | 0.73 | 0.74 | 0.71 | 0.72 |
AdaBoost | Bagging | CART | Random Forest | SVM | |
---|---|---|---|---|---|
classic_Binary | 0.98 | 0.95 | 0.90 | 0.96 | 0.98 |
classic_TF | 0.98 | 0.94 | 0.90 | 0.96 | 0.93 |
classic_TF-IDF | 0.97 | 0.94 | 0.88 | 0.97 | 0.96 |
binary_all_true | 0.95 | 0.93 | 0.86 | 0.92 | 0.88 |
binary_all_false | 0.95 | 0.89 | 0.86 | 0.91 | 0.87 |
binary_clique_true | 0.81 | 0.79 | 0.75 | 0.82 | 0.85 |
binary_clique_false | 0.80 | 0.81 | 0.78 | 0.82 | 0.85 |
sum_all_true | 0.95 | 0.90 | 0.87 | 0.90 | 0.87 |
sum_all_false | 0.95 | 0.91 | 0.86 | 0.90 | 0.87 |
sum_clique_true | 0.82 | 0.82 | 0.82 | 0.82 | 0.76 |
sum_clique_false | 0.81 | 0.81 | 0.80 | 0.81 | 0.76 |
max_all_true | 0.95 | 0.91 | 0.86 | 0.91 | 0.87 |
max_all_false | 0.95 | 0.92 | 0.86 | 0.89 | 0.87 |
max_clique_true | 0.83 | 0.86 | 0.79 | 0.84 | 0.84 |
max_clique_false | 0.83 | 0.85 | 0.81 | 0.84 | 0.84 |
min_all_true | 0.95 | 0.91 | 0.86 | 0.92 | 0.87 |
min_all_false | 0.95 | 0.90 | 0.86 | 0.91 | 0.87 |
min_clique_true | 0.79 | 0.81 | 0.76 | 0.82 | 0.81 |
min_clique_false | 0.81 | 0.81 | 0.78 | 0.81 | 0.81 |
AdaBoost | Bagging | CART | Random Forest | SVM | |
---|---|---|---|---|---|
classic_Binary | 0.96 | 0.96 | 0.90 | 0.94 | 0.96 |
classic_TF | 0.97 | 0.93 | 0.87 | 0.93 | 0.85 |
classic_TF-IDF | 0.96 | 0.93 | 0.87 | 0.95 | 0.92 |
binary_all_true | 0.94 | 0.92 | 0.84 | 0.80 | 0.67 |
binary_all_false | 0.94 | 0.88 | 0.84 | 0.77 | 0.63 |
binary_clique_true | 0.63 | 0.58 | 0.61 | 0.57 | 0.55 |
binary_clique_false | 0.62 | 0.58 | 0.63 | 0.57 | 0.55 |
sum_all_true | 0.93 | 0.89 | 0.87 | 0.80 | 0.76 |
sum_all_false | 0.93 | 0.92 | 0.85 | 0.79 | 0.76 |
sum_clique_true | 0.63 | 0.60 | 0.63 | 0.57 | 0.52 |
sum_clique_false | 0.63 | 0.58 | 0.62 | 0.57 | 0.52 |
max_all_true | 0.94 | 0.91 | 0.85 | 0.80 | 0.76 |
max_all_false | 0.94 | 0.92 | 0.85 | 0.79 | 0.76 |
max_clique_true | 0.63 | 0.58 | 0.62 | 0.57 | 0.51 |
max_clique_false | 0.62 | 0.58 | 0.62 | 0.56 | 0.51 |
min_all_true | 0.94 | 0.91 | 0.85 | 0.83 | 0.76 |
min_all_false | 0.94 | 0.90 | 0.86 | 0.81 | 0.76 |
min_clique_true | 0.62 | 0.60 | 0.61 | 0.57 | 0.57 |
min_clique_false | 0.63 | 0.58 | 0.61 | 0.57 | 0.57 |
AdaBoost | Bagging | CART | Random Forest | SVM | |
---|---|---|---|---|---|
classic_Binary | 0.97 | 0.96 | 0.90 | 0.95 | 0.97 |
classic_TF | 0.97 | 0.94 | 0.88 | 0.94 | 0.87 |
classic_TF-IDF | 0.96 | 0.94 | 0.88 | 0.96 | 0.94 |
binary_all_true | 0.95 | 0.93 | 0.85 | 0.83 | 0.69 |
binary_all_false | 0.95 | 0.88 | 0.84 | 0.80 | 0.63 |
binary_clique_true | 0.63 | 0.56 | 0.60 | 0.54 | 0.51 |
binary_clique_false | 0.63 | 0.56 | 0.63 | 0.55 | 0.50 |
sum_all_true | 0.94 | 0.90 | 0.87 | 0.83 | 0.78 |
sum_all_false | 0.94 | 0.92 | 0.86 | 0.82 | 0.79 |
sum_clique_true | 0.63 | 0.58 | 0.63 | 0.54 | 0.44 |
sum_clique_false | 0.63 | 0.56 | 0.62 | 0.53 | 0.44 |
max_all_true | 0.95 | 0.91 | 0.86 | 0.83 | 0.78 |
max_all_false | 0.95 | 0.92 | 0.85 | 0.82 | 0.79 |
max_clique_true | 0.63 | 0.56 | 0.62 | 0.54 | 0.42 |
max_clique_false | 0.62 | 0.56 | 0.61 | 0.52 | 0.42 |
min_all_true | 0.94 | 0.91 | 0.85 | 0.86 | 0.78 |
min_all_false | 0.94 | 0.90 | 0.86 | 0.84 | 0.78 |
min_clique_true | 0.62 | 0.58 | 0.61 | 0.54 | 0.54 |
min_clique_false | 0.63 | 0.56 | 0.61 | 0.53 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Probierz, B.; Hrabia, A.; Kozak, J. A New Method for Graph-Based Representation of Text in Natural Language Processing. Electronics 2023, 12, 2846. https://doi.org/10.3390/electronics12132846
Probierz B, Hrabia A, Kozak J. A New Method for Graph-Based Representation of Text in Natural Language Processing. Electronics. 2023; 12(13):2846. https://doi.org/10.3390/electronics12132846
Chicago/Turabian StyleProbierz, Barbara, Anita Hrabia, and Jan Kozak. 2023. "A New Method for Graph-Based Representation of Text in Natural Language Processing" Electronics 12, no. 13: 2846. https://doi.org/10.3390/electronics12132846
APA StyleProbierz, B., Hrabia, A., & Kozak, J. (2023). A New Method for Graph-Based Representation of Text in Natural Language Processing. Electronics, 12(13), 2846. https://doi.org/10.3390/electronics12132846