A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivation and Contributions
2. A Novel UAV-Assisted Communication Channel Model for Urban Transportation
2.1. UAV-Assisted Communication Architecture for Urban Transportation Scenario
2.2. UAV-Assisted Communication Multi-Mobility Channel Model
2.2.1. Description of Channel Model
2.2.2. Cluster Evolution with Markov Chain
3. Typical Statistical Properties of Proposed Model
3.1. Temporal ACF
3.2. RMS Delay Spread
3.3. Time-Variant PDP
3.4. Stationary Interval
3.5. LCR
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, C.X.; Lv, Z.; Gao, X.; You, X.; Hao, Y.; Haas, H. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Trans. Veh. Technol. 2022, 71, 9159–9173. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- He, R.; Schneider, C.; Ai, B.; Wang, G.; Zhong, Z.; Dupleich, D.A.; Thomae, R.S.; Boban, M.; Luo, J.; Zhang, Y. Propagation channels of 5G Millimeter-Wave Vehicle-to-Vehicle communications: Recent advances and future challenges. IEEE Veh. Technol. Mag. 2020, 15, 16–26. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.X.; Chang, H.; He, Y.; Bian, J. A novel non-stationary 6G UAV channel model for maritime communications. IEEE J. Sel. Areas Commun. 2021, 39, 2992–3005. [Google Scholar] [CrossRef]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Int. Things J. 2019, 6, 2241–2263. [Google Scholar] [CrossRef] [Green Version]
- Ouamri, M.A.; Singh, D.; Muthanna, M.A.; Bounceur, A.; Li, X. Performance analysis of UAV multiple antenna-assisted small cell network with clustered users. Wirel. Netw. 2023, 29, 1859–1872. [Google Scholar] [CrossRef]
- Wang, C.; Huang, J.; Wang, H.; Gao, X.; You, X.; Hao, Y. 6G oriented wireless communication channel characteristics analysis and modeling. arXiv 2020, arXiv:2007.13958. Available online: https://arxiv.org/ftp/arxiv/papers/2007/2007.13958.pdf (accessed on 20 February 2023).
- Alkama, D.; Ouamri, M.A.; Alzaidi, M.S.; Shaw, R.N.; Azni, M. Downlink performance analysis in MIMO UAV-cellular communication with LOS/NLOS propagation under 3D beamforming. IEEE Access 2022, 10, 6650–6659. [Google Scholar] [CrossRef]
- Ouamri, M.A.; Oteşteanu, M.-E.; Barb, G.; Gueguen, C. Coverage Analysis and Efficient Placement of Drone-BSs in 5G Networks. Eng. Proc. 2022, 14, 18. [Google Scholar] [CrossRef]
- Lin, X.; Yajnanarayana, V.; Muruganathan, S.D.; Gao, S.; Asplund, H.; Maattanen, H.L.; Bergstrom, M.; Euler, S.; Wang, Y.P.E. The sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun. Mag. 2018, 56, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Mitsuhashi, T.; Kato, N. UAV-Aided information diffusion for Vehicle-to-Vehicle (V2V) in disaster scenarios. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1909–1917. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, X. A 3-D Non-Stationary model for beyond 5G and 6G Vehicle-to-Vehicle mmWave massive MIMO channels. IEEE Trans. Intell. Transp. Syst. 2022, 23, 8260–8276. [Google Scholar] [CrossRef]
- Stefanovic, C.; Panic, S.; Bhatia, V.; Kumar, N. On Second-Order Statistics of the Composite Channel Models for UAV-to-Ground Communications With UAV Selection. IEEE Open J. Commun. Soc. 2021, 2, 534–544. [Google Scholar] [CrossRef]
- Hua, B.; Ni, H.; Zhu, Q.; Wang, C.X.; Zhou, T.; Mao, K.; Bao, J.; Zhang, X. Channel modeling for UAV-to-Ground communications with posture variation and fuselage scattering effect. IEEE Trans. Commun. 2023, 71, 3103–3116. [Google Scholar] [CrossRef]
- Kunisch, J.; de la Torre, I.; Winkelmann, A.; Eube, M.; Fuss, T. Wideband time-variant air-to-ground radio channel measurements at 5 GHz. In Proceedings of the Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 1386–1390. [Google Scholar]
- Matolak, D.W.; Sen, I.; Xiong, W. The 5-GHz airport surface area channel—Part I: Measurement and modeling results for large airports. IEEE Trans. Veh. Technol. 2008, 57, 2014–2026. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Y.; Chang, H.; Zhang, J.; Zhang, M.; Poechmueller, P.; Wang, C. AG channel measurements and characteristics analysis in hilly scenarios for 6G UAV communications. China Commun. 2022, 19, 32–46. [Google Scholar] [CrossRef]
- An, H.; Guan, K.; Li, W.; Zhang, J.; He, D.; Zhu, F.; Chen, L. Measurement and Ray-tracing for UAV Air-to-air channel modeling. In Proceedings of the 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), Hefei, China, 21–23 August 2022; pp. 415–420. [Google Scholar] [CrossRef]
- Khawaja, W.; Ozdemir, O.; Guvenc, I. UAV Air-to-Ground channel characterization for mmWave systems. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Ma, Z.; Ai, B.; He, R.; Wang, G.; Niu, Y.; Zhong, Z. A wideband non-stationary air-to-air channel model for UAV communications. IEEE Trans. Veh. Technol. 2019, 69, 1214–1226. [Google Scholar] [CrossRef]
- Ma, Z.; Ai, B.; He, R.; Zhong, Z. A 3D air-to-air wideband non-stationary channel model of UAV communications. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Zhang, Y.; Zhou, Y.X.; Ji, Z.J.; Lin, K.; He, Z.W. A Three-Dimensional Geometry-based Stochastic Model for Air-to-Air UAV Channels. In Proceedings of the 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), Victoria, BC, Canada, 4–7 October 2020; pp. 1–5. [Google Scholar]
- He, R.; Ai, B.; Stüber, G.L.; Wang, G.; Zhong, Z. Geometrical-Based modeling for Millimeter-Wave MIMO Mobile-to-Mobile channels. IEEE Trans. Veh. Technol. 2018, 67, 2848–2863. [Google Scholar] [CrossRef]
- Bian, J.; Wang, C.X.; Gao, X.; You, X.; Zhang, M. A general 3D non-stationary wireless channel model for 5G and beyond. IEEE Trans. Wirel. Commun. 2021, 20, 3211–3224. [Google Scholar] [CrossRef]
- Bian, J.; Sun, J.; Wang, C.X.; Feng, R.; Huang, J.; Yang, Y.; Zhang, M. A WINNER+ based 3-D Non-Stationary wideband MIMO channel model. IEEE Trans. Wirel. Commun. 2018, 17, 1755–1767. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Jiang, H.; Zhang, J.; Wu, L.; Dang, J. A 3D Non-Stationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-Ground mmWave communications. IEEE Trans. Wirel. Commun. 2022, 21, 5658–5672. [Google Scholar] [CrossRef]
- Mao, X.; Wang, C.X.; Chang, H. A 3D Non-Stationary Geometry-Based stochastic model for 6G UAV Air-to-Air channels. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Bai, L.; Huang, Z.; Cheng, X. A Non-Stationary 6G UAV channel model with 3D continuously arbitrary trajectory and Self-Rotation. IEEE Trans. Wirel. Commun. 2022, 21, 10592–10606. [Google Scholar] [CrossRef]
- Bai, L.; Huang, Z.; Du, H.; Cheng, X. A 3-D nonstationary wideband V2V GBSM with UPAs for massive MIMO wireless communication systems. IEEE Int. Things J. 2021, 8, 17622–17638. [Google Scholar] [CrossRef]
- Elsagher, M.; Al-Hourani, A.; Wang, K.; Choi, J. A study on MIMO gain of UAV-to-Ground channel in urban environments. In Proceedings of the 2021 IEEE VTS 17th Asia Pacific Wireless Communications Symposium (APWCS), Osaka, Japan, 30–31 August 2021; pp. 1–5. [Google Scholar]
- Arpaio, M.J.; Vitucci, E.M.; Barbiroli, M.; Degli-Esposti, V.; Masotti, D.; Fuschini, F. Ray-Launching narrowband analysis of UAV-to-Ground propagation in urban environment. In Proceedings of the 2019 International Symposium on Antennas and Propagation (ISAP), Xi’an, China, 27–30 October 2019; pp. 1–3. [Google Scholar]
- Vitucci, E.M.; Semkin, V.; Arpaio, M.J.; Barbiroli, M.; Fuschini, F.; Oestges, C.; Degli-Esposti, V. Experimental characterization of Air-to-ground propagation at mm-Wave frequencies in dense urban environment. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar]
- Wang, X.Y.; Mei, N.; Fan, X.; Wang, X.; Gao, H.; Huang, Y.D. Wireless channel modeling in complex urban environment based on high frequency asymptotic method. In Proceedings of the 2022 International Applied Computational Electromagnetics Society Symposium (ACES-China), Xuzhou, China, 9–12 December 2022; pp. 1–3. [Google Scholar]
- Chang, H.; Wang, C.X.; Liu, Y.; Huang, J.; Sun, J.; Zhang, W.; Gao, X. A novel nonstationary 6G UAV-to-Ground wireless channel model with 3-D arbitrary trajectory changes. IEEE Int. Things J. 2021, 8, 9865–9877. [Google Scholar] [CrossRef]
- Kyösti, P.; Meinilä, J.; Hentila, L.; Zhao, X.; Jämsä, T.; Schneider, C.; Narandzic, M.; Milojević, M.; Hong, A.; Ylitalo, J.; et al. WINNER II channel models. In IST-4-027756 WINNER II D1.1.2 V1.2; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Zhu, Q.; Li, H.; Fu, Y.; Wang, C.X.; Tan, Y.; Chen, X.; Wu, Q. A novel 3D Non-Stationary wireless MIMO channel simulator and hardware emulator. IEEE Trans. Commun. 2018, 66, 3865–3878. [Google Scholar] [CrossRef]
- Meinila, J.; Kyosti, P.; Hentila, L.; Jamsa, T.; Suikkanen, E.; Kunnari, E. WINNER+ Final Channel Models, v1.0, Document D5.3, June 2010. Available online: https://www.docin.com/p-511893710.html (accessed on 20 February 2023).
- Wu, S.; Wang, C.X.; Alwakeel, M.M.; You, X. A general 3-D Non-Stationary 5G wireless channel model. IEEE Trans. Commun. 2018, 66, 3065–3078. [Google Scholar] [CrossRef]
- Serfozo, R. Basics of Applied Stochastic Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 1–99, 241–242. [Google Scholar]
Symbol | Definition |
---|---|
AAoD and EAoD of the mth ray in the nth cluster | |
AAoA and EAoA of the mth ray in the nth cluster | |
AAoD and EAoD of the LoS component | |
AAoA and EAoA of the LoS component | |
Coordinates of center of cluster | |
Coordinates of scattering points of mth ray in cluster | |
Time-variant cluster number in MB/SB path | |
Ray number in the nth cluster in MB/SB path | |
Ratio of the number of dynamic clusters to the number of static clusters | |
Density of the vehicle (the statistical average number of cars in valid observation length) | |
Coordinates of the first Tx/Rx antenna | |
Elevation angles of Tx/Rx antenna array’s direction | |
Azimuth angles of Tx/Rx antenna array’s direction | |
Distance between adjacent antennas of the Tx/Rx antenna array | |
Azimuth/elevation angle of x’s velocity at time 0; x can be T, R, A, Z, COSB | |
Azimuth/elevation angle of x’s acceleration; x can be T, R, A, Z, COSB | |
Distance between the T/R and the via mth ray | |
Recombination rate of clusters | |
Probability of states for the cluster | |
Distance between the Tx/Rx antenna and the ray within the cluster | |
Doppler frequencies of Tx/RX for SB case | |
Velocity of Tx, Rx, cluster A, cluster Z, or cluster of SB | |
Acceleration of Tx, Rx, cluster A, cluster Z, or cluster of SB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Huang, X.; Xu, Q.; Liu, Y.; Zhang, J.; Huang, J. A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications. Electronics 2023, 12, 3015. https://doi.org/10.3390/electronics12143015
Liang J, Huang X, Xu Q, Liu Y, Zhang J, Huang J. A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications. Electronics. 2023; 12(14):3015. https://doi.org/10.3390/electronics12143015
Chicago/Turabian StyleLiang, Jinfan, Xun Huang, Qiwang Xu, Yu Liu, Jingfan Zhang, and Jie Huang. 2023. "A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications" Electronics 12, no. 14: 3015. https://doi.org/10.3390/electronics12143015
APA StyleLiang, J., Huang, X., Xu, Q., Liu, Y., Zhang, J., & Huang, J. (2023). A Novel UAV-Assisted Multi-Mobility Channel Model for Urban Transportation Emergency Communications. Electronics, 12(14), 3015. https://doi.org/10.3390/electronics12143015