IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor and Electronic Readout Design
2.2. Internet of Things Module, MQTT, Database, and Processing from the Cloud
2.3. Proof of Concept of Multi-Nodes, Database, and Processing from the Cloud
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez-Moreno, M.A.; Keshtkar, S.; Padilla-Reyes, D.A.; Ramos-López, E.; García-Martínez, M.; Hernández-Luna, M.C.; Mogro, A.E.; Mahlknecht, J.; Huertas, J.I.; Peimbert-García, R.E.; et al. Sensors for Sustainable Smart Cities: A Review. Appl. Sci. 2021, 11, 8198. [Google Scholar] [CrossRef]
- Cooperative Border Monitoring Opportunities for the Global Partnership. Available online: https://2009-2017.state.gov (accessed on 7 July 2023).
- Smith, L.; Murphy, J.W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D.R.; Quevedo-Lopez, M.; Gnade, B. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 838, 117–123. [Google Scholar] [CrossRef]
- Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Rajab, H.; Cinkelr, T. IoT based Smart Cities. In Proceedings of the 2018 International Symposium on Networks, Computers and Communications (ISNCC), Rome, Italy, 19–21 June 2018; pp. 1–4. [Google Scholar]
- Zgank, A. Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service. Sensors 2020, 20, 21. [Google Scholar] [CrossRef] [Green Version]
- Abi Saab, M.T.; Jomaa, I.; Skaf, S.; Fahed, S.; Todorovic, M. Assessment of a Smartphone Application for Real-Time Irrigation Scheduling in Mediterranean Environments. Water 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.A.A.; Yamin, M. Advantages of using fog in IoT applications. Int. J. Inf. Technol. 2021, 13, 829–837. [Google Scholar] [CrossRef]
- Mijuskovic, A.; Chiumento, A.; Bemthuis, R.; Aldea, A.; Havinga, P. Resource Management Techniques for Cloud/Fog and Edge Computing: An Evaluation Framework and Classification. Sensors 2021, 21, 1832. [Google Scholar] [CrossRef]
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K.-C. Review of Internet of Things (IoT) in Electric Power and Energy Systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Davenport, K. Nations Recommit to Nuclear Security. Arms Control Today 2020, 50, 34. [Google Scholar]
- Nayan, R. The United Nations and Nuclear Issues. Strategy Anal. 2020, 44, 438–450. [Google Scholar] [CrossRef]
- Ruff, T.A. Ending nuclear weapons before they end us: Current challenges and paths to avoiding a public health catastrophe. J. Public Health Policy 2022, 43, 5–17. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Avila-Avendano, C.; Solís-Cisneros, H.I.; Conde, J.; Sevilla-Camacho, P.Y.; Quevedo-López, M.A. Modeling and SPICE Simulation of the CdS/CdTe Neutron Detectors Integrated with Si-Poly TFTs Amplifiers. IEEE Trans. Nucl. Sci. 2022, 69, 1310–1315. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Casallas-Moreno, Y.L.; Cardona, D.; Kudriavtsev, Y.; Santana-Rodríguez, G.; Mendoza-Pérez, R.; Contreras-Puente, G.; Mendez-Garcia, V.H.; Gallardo-Hernández, S.; Quevedo-Lopez, M.A.; et al. Characterization of n-GaN/p-GaAs NP heterojunctions. Superlattices Microstruct. 2019, 136, 106298. [Google Scholar] [CrossRef]
- Fujiwara, T.; Miyoshi, H.; Mitsuya, Y.; Yamada, N.L.; Wakabayashi, Y.; Otake, Y.; Hino, M.; Kino, K.; Tanaka, M.; Oshima, N.; et al. Neutron flat-panel detector using In–Ga–Zn–O thin-film transistor. Rev. Sci. Instrum. 2022, 93, 013304. [Google Scholar] [CrossRef]
- Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and Internetrnet of things. InfoMat 2020, 2, 1131–1162. [Google Scholar] [CrossRef]
- Putro, W.S.; Muztaba, R.; Pratiwi, N.; Putri, A.N.I.; Birastri, W. Internet of Things (IoT) For Galactic Cosmic Ray Application Over Astronomical Observatory in Near Future: A Review Study. J. Phys. Conf. Ser. 2019, 1231, 12024. [Google Scholar] [CrossRef]
- Muhtadan; Abimanyu, A.; Akmalia, R.; Salam, M. Design of IoT-based Radiation Monitor Area for Nuclear and Radiological Emergency Preparedness System in Yogyakarta Nuclear Area. J. Phys. Conf. Ser. 2020, 1428, 12050. [Google Scholar] [CrossRef]
- Krytska, Y.; Skarga-Bandurova, I.; Velykzhanin, A. IoT-based situation awareness support system for real-time emergency management. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; Volume 2, pp. 955–960. [Google Scholar]
- Ji, Z.; Anwen, Q. The application of internet of things(IOT) in emergency management system in China. In Proceedings of the 2010 IEEE International Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 8–10 November 2010; pp. 139–142. [Google Scholar]
- Lu, X.; Liu, J.; Zhao, H. Collaborative target tracking of IoT heterogeneous nodes. Measurement 2019, 147, 106872. [Google Scholar] [CrossRef]
- Strauss, D.T.; Poluianov, S.; Van der Merwe, C.; Krüger, H.; Diedericks, C.; Krüger, H.; Usoskin, I.; Heber, B.; Nndanganeni, R.; Blanco-Ávalos, J.; et al. The mini-neutron monitor: A new approach in neutron monitor design. J. Sp. Weather Sp. Clim. 2020, 10, 39. [Google Scholar] [CrossRef]
- Steigies, C.T.; Thomann, M.; Rother, O.M.; Wimmer-Schweingruber, R.F.; Heber, B. Real-time database for high-resolution Neutron Monitor measurements. In Proceedings of the 30th International Cosmic Ray Conference, Merida, Mexico, 3–11 July 2007; Caballero, R., Medina-Tanco, G., Nellen, L., Eds.; pp. 303–306. [Google Scholar]
- Wukkadada, B.; Wankhede, K.; Nambiar, R.; Nair, A. Comparison with HTTP and MQTT In Internet of Things (IoT). In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018; pp. 249–253. [Google Scholar] [CrossRef]
- Dhanekar, S.; Rangra, K. Wearable Dosimeters for Medical and Defence Applications: A State of the Art Review. Adv. Mater. Technol. 2021, 6, 2000895. [Google Scholar] [CrossRef]
- Magalotti, D.; Placidi, P.; Dionigi, M.; Scorzoni, A.; Servoli, L. Experimental Characterization of a Personal Wireless Sensor Network for the Medical X-ray Dosimetry. IEEE Trans. Instrum. Meas. 2016, 65, 2002–2011. [Google Scholar] [CrossRef]
- Tran-Quang, V.; Dao-Viet, H. An internet of radiation sensor system (IoRSS) to detect radioactive sources out of regulatory control. Sci. Rep. 2022, 12, 7195. [Google Scholar] [CrossRef] [PubMed]
- STMicroelectronics Reference Manual. STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439 advanced Arm®-Based 32-bit MCUs. 2021. Available online: https://www.st.com/resource/en/reference_manual/rm0090-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf (accessed on 7 July 2023).
- Russell-Pavier, F.S.; Kaluvan, S.; Megson-Smith, D.; Connor, D.T.; Fearn, S.J.; Connolly, E.L.; Scott, T.B.; Martin, P.G. A highly scalable and autonomous spectroscopic radiation mapping system with resilient IoT detector units for dosimetry, safety, and security. J. Radiol. Prot. 2022, 43, 011503. [Google Scholar] [CrossRef] [PubMed]
- Adumene, S.; Islam, R.; Amin, M.T.; Nitonye, S.; Yazdi, M.; Johnson, K.T. Advances in nuclear power system design and fault-based condition monitoring towards safety of nuclear-powered ships. Ocean Eng. 2022, 251, 111156. [Google Scholar] [CrossRef]
- Sharaf, A.; Zorkany, M.; Shiple, M. High efficient low cost gamma-ray radiation sensor based on IoT platform. J. Radiat. Res. Appl. Sci. 2022, 15, 100463. [Google Scholar] [CrossRef]
- He, S.; Shin, H.; Tsourdos, A. Multi-Sensor Multi-Target Tracking Using Domain Knowledge and Clustering. IEEE Sens. J. 2018, 18, 8074–8084. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, L.; Auer, S.; Gemer, A.; Grün, E.; Horanyi, M.; Juhasz, A.; Kempf, S.; Malaspina, D.; Mocker, A.; Moebius, E.; et al. Development of the nano-dust analyzer (NDA) for detection and compositional analysis of nanometer-size dust particles originating in the inner heliosphere. Rev. Sci. Instrum. 2014, 85, 035113. [Google Scholar] [CrossRef]
- CloudMQTT CloudMQTT Documentation. Available online: https://www.cloudmqtt.com/docs/index.html (accessed on 7 July 2023).
- Mehmood, M.U.; Ali, W.; Ulasyar, A.; Zad, H.S.; Khattak, A.; Imran, K. A Low Cost Internet of Things (LCIoT) Based System for Monitoring and Control of UPS System using Node-Red, CloudMQTT and IBM Bluemix. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019; pp. 1–5. [Google Scholar]
- Soni, D.; Makwana, A. A survey on mqtt: A protocol of internet of things(IoT). In Proceedings of the International Conference Telecommunication Power Analysis and Computing Techniques, Chennai, India, 6–8 April 2017; pp. 1–5. [Google Scholar]
- Yokotani, T.; Sasaki, Y. Comparison with HTTP and MQTT on required network resources for IoT. In Proceedings of the 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, Indonesia, 13–15 September 2016; pp. 1–6. [Google Scholar]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.J.-Q.; Danon, Y.; Bhat, I.B. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl. Phys. Lett. 2017, 110, 23503. [Google Scholar] [CrossRef] [Green Version]
- Kuluöztürk, M.F.; Özgen, S.; Doǧru, M. Development of a low noise and low energy consumption alpha spectroscopy amplifier for 222Rn gas detection. Acta Phys. Pol. A 2017, 132, 789–791. [Google Scholar] [CrossRef]
- Huth, G.C.; Trice, J.B.; McKinney, R.A. Internal Pulse Amplification in Silicon p-n Junction Radiation Detection Junctions. Rev. Sci. Instrum. 1964, 35, 1220–1222. [Google Scholar] [CrossRef]
- Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, M.; Porcelli, D.; Prohl, G.; Twining, J. The Environmental Behaviour of Polonium; Technical Reports Series No. 484; International Atomic Energy Agency: Vienna, Austria, 2017; ISBN 9789201121165. [Google Scholar]
- Barral, V.; Suárez-Casal, P.; Escudero, C.J.; García-Naya, J.A. Multi-Sensor Accurate Forklift Location and Tracking Simulation in Industrial Indoor Environments. Electronics 2019, 8, 1152. [Google Scholar] [CrossRef] [Green Version]
- Altowaijri, S.; Ayari, M.; El Touati, Y. Impact of Multi-Sensor Technology for Enhancing Global Security in Closed Environments Using Cloud-Based Resources. J. Sens. Actuator Netw. 2019, 8, 4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Gutiérrez, C.A.; Delgado-del-Carpio, M.; Zebadúa-Chavarría, L.A.; Hernández-de-León, H.R.; Escobar-Gómez, E.N.; Quevedo-López, M. IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics 2023, 12, 3042. https://doi.org/10.3390/electronics12143042
Hernández-Gutiérrez CA, Delgado-del-Carpio M, Zebadúa-Chavarría LA, Hernández-de-León HR, Escobar-Gómez EN, Quevedo-López M. IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics. 2023; 12(14):3042. https://doi.org/10.3390/electronics12143042
Chicago/Turabian StyleHernández-Gutiérrez, Carlos A., Marcelo Delgado-del-Carpio, Lizette A. Zebadúa-Chavarría, Héctor R. Hernández-de-León, Elias N. Escobar-Gómez, and Manuel Quevedo-López. 2023. "IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials" Electronics 12, no. 14: 3042. https://doi.org/10.3390/electronics12143042
APA StyleHernández-Gutiérrez, C. A., Delgado-del-Carpio, M., Zebadúa-Chavarría, L. A., Hernández-de-León, H. R., Escobar-Gómez, E. N., & Quevedo-López, M. (2023). IoT-Enabled System for Detection, Monitoring, and Tracking of Nuclear Materials. Electronics, 12(14), 3042. https://doi.org/10.3390/electronics12143042