Global Prescribed-Time Stabilization of Input-Quantized Nonlinear Systems via State-Scale Transformation
Abstract
:1. Introduction
- (i)
- Fully taking into consideration the practical system requirements, both quantized input and prescribed-time convergence are included firstly in this paper.
- (ii)
- A novel SST is proposed to change the original PTS problem into the problem of asymptotic stabilization of the transformed one.
- (iii)
- Under a new homogeneous-like restricted condition on system growth, a systematic design method ensuring the achievement of the performance requirements is proposed by delicately utilizing the API technique.
- (iv)
- As an application of the proposed theoretical result, the problem of PTS with quantized input for a liquid-level system is solved.
2. Problem Formulation and Preliminaries
2.1. Problem Formulation
2.2. Preliminaries
3. Prescribed-Time Stabilization
3.1. Controller Design of
3.2. Controller Design for and Main Result
4. Simulation Example
Liquid levels of tank i; | |
H | Steady-state liquid levels of two tanks; |
Cross sections of tank i; | |
Cross sections of the inlet manual valves of tanks 1 and 2; | |
Cross sections of the right outlet manual valves of tank 2; | |
Q | Inflow rate of this system; |
Inflow rate from tank 2 to tank 1; | |
Outflow rate of this system; | |
g | Gravitational acceleration. |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Rui, C.; Reyhanoglu, M.; Kolmanovsky, I.; Cho, S.; McClamroch, N.H. Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. In Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 10–12 December 1997; Volume 4, pp. 3998–4003. [Google Scholar]
- Cheng, D.; Lin, W. On p-normal forms of nonlinear systems. IEEE Trans. Autom. Control 2003, 48, 1242–1248. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Qian, C. Adding one power integrator: A tool for global stabilization of high order lower-triangular systems. Syst. Control Lett. 2000, 39, 339–351. [Google Scholar]
- Qian, C.; Lin, W. A continuous feedback approach to global strong stabilization of nonlinear systems. IEEE Trans. Autom. Control 2001, 46, 1061–1079. [Google Scholar]
- Ding, S.; Li, S.; Zheng, W.X. Nonsmooth stabilization of a class of nonlinear cascaded systems. Automatica 2012, 48, 2597–2606. [Google Scholar]
- Gao, F.; Wu, Y. Global state feedback stabilisation for a class of more general high-order non-linear systems. IET Control Theory Appl. 2014, 8, 1648–1655. [Google Scholar]
- Sun, Z.Y.; Zhang, C.H.; Wang, Z. Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 2017, 80, 102–109. [Google Scholar]
- Duan, N.; Min, H.; Zhang, Z. Adaptive stabilization control for high-order nonlinear time-delay systems with its application. J. Frankl. Inst. 2017, 354, 5825–5838. [Google Scholar]
- Wang, X.; Li, H.; Zong, G.; Zhao, X. Adaptive fuzzy tracking control for a class of high-order switched uncertain nonlinear systems. J. Frankl. Inst. 2017, 354, 6567–6587. [Google Scholar] [CrossRef]
- Chen, C.C.; Qian, C.; Sun, Z.Y.; Liang, Y.W. Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity. IEEE Trans. Autom. Control 2018, 63, 2212–2217. [Google Scholar]
- Guo, T.T.; Zhang, K.; Xie, X.J. Output feedback stabilization of high-order nonlinear systems with polynomial nonlinearity. J. Frankl. Inst. 2018, 355, 6579–6596. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, G.S. A new approach to stabilization of high-order nonlinear systems with an asymmetric output constraint. Int. J. Robust Nonlinear Control. 2020, 30, 756–775. [Google Scholar] [CrossRef]
- Bhat, S.P.; Bernstein, D.S. Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 2020, 38, 751–766. [Google Scholar]
- Huang, X.; Lin, W.; Yang, B. Global finite-time stabilization of a class of uncertain nonlinear systems. Automatica 2005, 41, 881–888. [Google Scholar]
- Liu, Y. Global finite-time stabilization via time-varying feedback for uncertain nonlinear systems. SIAM J. Control Optim. 2014, 52, 1886–1913. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Xue, L.R.; Zhang, K. A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 2015, 58, 60–66. [Google Scholar] [CrossRef]
- Fu, J.; Ma, R.; Chai, T. Global finite-time stabilization of a class of switched nonlinear systems with the powers of positive odd rational numbers. Automatica 2015, 54, 360–373. [Google Scholar] [CrossRef]
- Fu, J.; Ma, R.; Chai, T. Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings. IEEE Trans. Autom. Contrl 2017, 62, 5998–6003. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Shao, Y.; Chen, C.C. Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 2019, 106, 339–348. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, W.X.; Ding, S. An adaptive SOSM controller design by using a sliding-mode-based filter and its application to buck converter. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2409–2418. [Google Scholar] [CrossRef]
- Chen, C.C.; Sun, Z.Y. A unified approach to finite-time stabilization of high-order nonlinear systems with an asymmetric output constraint. Automatica 2020, 111, 108581. [Google Scholar] [CrossRef]
- Chen, C.C.; Sun, Z.Y. Output feedback finite-time stabilization for high-order planar systems with an output constraint. Automatica 2020, 114, 108843. [Google Scholar] [CrossRef]
- Chen, H.; Zong, G.; Gao, F.; Shi, Y. Probabilistic event-triggered policy for extended dissipative finite-time control of MJSs under cyber-attacks and actuator failures. IEEE Trans. Autom. Control 2023. [Google Scholar] [CrossRef]
- Andrieu, V.; Praly, L.; Astolfi, A. Homogeneous approximation, recursive observer design, output feedback. SIAM J. Control Optim. 2008, 47, 1814–1850. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Zuo, Z.; Yan, X.; Wang, H. A fixed-time output feedback control scheme for double integrator systems. Automatica 2017, 80, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 2012, 57, 2106–2110. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica 2015, 54, 305–309. [Google Scholar] [CrossRef]
- Defoort, M.; Demesure, G.; Zuo, Z.; Polyakov, A.; Djemai, M. Fixed-time stabilisation and consensus of non-holonomic systems. IET Control Theory Appl. 2016, 10, 2497–2505. [Google Scholar] [CrossRef]
- Basin, M.; Shtessel, Y.; Aldukali, F. Continuous finite-and fixed-time high-order regulators. J. Frankl. Inst. 2016, 353, 5001–5012. [Google Scholar] [CrossRef]
- Basin, M.; Rodr, P.; Ding, S.X.; Daszenies, T.; Shtessel, Y. Continuous fixed-time convergent regulator for dynamic systems with unbounded disturbances. J. Frankl. Inst. 2018, 355, 2762–2778. [Google Scholar] [CrossRef]
- Basin, M.; Rodr, P.; Avellaneda, F.G. Continuous fixed-time controller design for mechatronic systems with incomplete measurements. IEEE/ASME Trans. Mechatronics 2018, 23, 57–67. [Google Scholar] [CrossRef]
- Chen, C.C.; Sun, Z.Y. Fixed-time stabilisation for a class of high-order non-linear systems. IET Control Theory Appl. 2018, 12, 2578–2587. [Google Scholar] [CrossRef]
- Gao, F.; Wu, Y.; Zhang, Z.; Liu, Y. Global fixed-time stabilization for a class of switched nonlinear systems with general powers and its application. Nonlinear Anal. Hybrid Syst. 2019, 31, 56–68. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.L.; Ding, L. Distributed finite-time secondary frequency and voltage control for islanded microgrids with communication delays and switching topologies. IEEE Trans. Cybern. 2021, 51, 3988–3999. [Google Scholar] [CrossRef]
- Zuo, Z.; Defoort, M.; Tian, B.; Ding, Z. Distributed consensus observer for multi-agent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 2019, 65, 1771–1778. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Z. Fixed-time stabilization of general linear systems with input delay. J. Frankl. Inst. 2019, 356, 4467–4477. [Google Scholar] [CrossRef]
- Zarchan, P. Tactical and Strategic Missile Guidance; American Institute of Aeronautics and Astronautics (AIAA): Reston, VA, USA, 2007. [Google Scholar]
- Sánchez-Torres, J.D.; M Defoort, A.J. Munoz-Vázquez Predefined-time stabilisation of a class of nonholonomic systems. Int. J. Control 2020, 9, 2941–2948. [Google Scholar] [CrossRef]
- Muñoz-Vázquez, A.J.; Sánchez-Torres, J.D.; Gutiérrez-Alcalá, S.; Jiménez-Rodríguez, E.; Loukianov, A.G. Predefined-time robust contour tracking of robotic manipulators. J. Frankl. Inst. 2019, 356, 2709–2722. [Google Scholar] [CrossRef]
- Cao, Y.; Wen, C.; Tan, S.; Song, Y. Prespecifiable fixed-time control for a class of uncertain nonlinear systems in strict-feedback form. Int. J. Robust Nonlinear Control 2020, 30, 1203–1222. [Google Scholar] [CrossRef]
- Wang, F.; Miao, Y.; Li, C.; Hwang, I. Attitude control of rigid spacecraft with predefined-time stability. J. Frankl. Inst. 2020, 357, 4212–4221. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Holloway, J.; Krstic, M. Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time. Automatica 2017, 83, 243–251. [Google Scholar] [CrossRef]
- Gao, F.; Wu, Y.; Zhang, Z. Global fixed-time stabilization of switched nonlinear systems: A time-varying scaling transformation approach. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1890–1894. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Liu, T.F. Quantized nonlinear control-a survey. Acta Autom. Sin. 2013, 39, 1820–1830. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, C.; Wang, W. Adaptive control of uncertain nonlinear systems with quantized input signal. Automatica 2018, 95, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Wu, Y.; Liu, Y. Finite-time stabilization for a class of switched stochastic nonlinear systems with dead-zone input nonlinearities. Int. J. Robust Nonlinear Control 2018, 28, 3239–3257. [Google Scholar] [CrossRef]
- Gao, F.; Huang, J.; Wu, Y.; Zhao, X. A time-scale transformation approach to prescribed-time stabilisation of non-holonomic systems with inputs quantisation. Int. J. Syst. Sci. 2022, 53, 1796–1808. [Google Scholar] [CrossRef]
- Ding, S.; Chen, W.H.; Mei, K.; Murray-Smith, D. Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans. Ind. Electron. 2019, 67, 1222–1232. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.K. Nonlinear Systems, 3rd ed.; Prentice-Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Gao, F.; Chen, C.C.; Huang, J.; Wu, Y. Prescribed-time stabilization of uncertain planar nonlinear systems with output constraints. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2887–2891. [Google Scholar] [CrossRef]
- Ning, B.; Han, Q.L.; Zuo, Z.; Jin, J.; Zheng, J. Collective behaviors of mobile robots beyond the nearest neighbor rules with switching topology. IEEE Trans. Cybern. 2018, 48, 1577–1590. [Google Scholar] [CrossRef]
- Chen, H.; Zong, G.; Zhao, X.; Gao, F.; Shi, K. Secure filter design of fuzzy switched CPSs with mismatched modes and application: A multidomain event-triggered strategy. IEEE Trans. Ind. Inform. 2023. [Google Scholar] [CrossRef]
- Chen, H.; Zong, G.; Liu, X.; Zhao, X.; Niu, B.; Gao, F. A sub-domain-awareness adaptive probabilistic event-triggered policy for attack-compensated output control of markov jump CPSs with dynamically matching modes. IEEE Trans. Autom. Sci. Eng. 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Zhang, W.; Gao, F. Global Prescribed-Time Stabilization of Input-Quantized Nonlinear Systems via State-Scale Transformation. Electronics 2023, 12, 3357. https://doi.org/10.3390/electronics12153357
Guo X, Zhang W, Gao F. Global Prescribed-Time Stabilization of Input-Quantized Nonlinear Systems via State-Scale Transformation. Electronics. 2023; 12(15):3357. https://doi.org/10.3390/electronics12153357
Chicago/Turabian StyleGuo, Xin, Wenhui Zhang, and Fangzheng Gao. 2023. "Global Prescribed-Time Stabilization of Input-Quantized Nonlinear Systems via State-Scale Transformation" Electronics 12, no. 15: 3357. https://doi.org/10.3390/electronics12153357
APA StyleGuo, X., Zhang, W., & Gao, F. (2023). Global Prescribed-Time Stabilization of Input-Quantized Nonlinear Systems via State-Scale Transformation. Electronics, 12(15), 3357. https://doi.org/10.3390/electronics12153357