Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method
Abstract
:1. Introduction
- Introducing a detailed examination of a renewable energy system operated in two different modes: grid connected and standalone.
- A detailed design for the control systems used for each system unit is discussed.
- A novel predictive control topology is developed and applied to enhance the synchronous generator’s dynamics.
- An effective MPPT strategy for the PV system is formulated and validated.
- For standalone operation, an efficient procedure is adopted to maintain the power balance.
- The feasibility of the considered generation system is confirmed for different operating conditions.
2. System under Study
2.1. Wind Power System
2.1.1. Turbine Modeling
2.1.2. Modeling of PMSG and Machine Side Converter
2.2. DC Bus and Filter Modeling
2.3. PV and Battery Systems Modeling
2.3.1. Modeling of PV System
2.3.2. Battery Model
3. Design of Control Systems
3.1. Battery Converter Control
3.2. Control Algorithm for PV System
3.3. Control of GSC
3.4. Control of Five-Phase PMSG
3.4.1. Classic Predictive Torque Control
3.4.2. Predictive Flux Control
3.4.3. New Designed Predictive Control Technique
4. Power Management (PM) Topology for Standalone Operation
5. Evaluation Results
5.1. Results under Grid Connection Mode
5.2. Results under Standalone Operation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Value | Parameter | Value |
---|---|---|---|
D | 4 m | R | 0.67 Ω |
Prated | 3.9 KW | Ls | 0.0032 H |
ωw,nom | 10 m/s | ψf | 0.2 Vs |
X | 3.83 | Cdc | 2200 µF |
p | 2 | Ts | 100 µs |
Parameter | Value | Parameter | Value |
---|---|---|---|
Rt | 0.0275 Ω | Csu | 0.0821 F |
Re | 0.0375 Ω | Lbat | 0.03 H |
Rsu | 0.0375 Ω | Vbat,rat | 240 V |
Cbu | 8.8373 F | Capacity | 50 Ah |
Variable | Value |
---|---|
Pnom | 1 KW |
Voc | 64.2 V |
Isc | 5.96 A |
2 | |
2 |
References
- Al Hadi, A.; Silva, C.A.S.; Hossain, E.; Challoo, R. Algorithm for Demand Response to Maximize the Penetration of Renewable Energy. IEEE Access 2020, 8, 55279–55288. [Google Scholar] [CrossRef]
- Nehrir, M.H.; Wang, C.; Strunz, K.; Aki, H.; Ramakumar, R.; Bing, J.; Miao, Z.; Salameh, Z. A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications. IEEE Trans. Sustain. Energy 2011, 2, 392–403. [Google Scholar]
- Hashimoto, J.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hasegawa, M.; Otani, K. Advanced Grid Integration Test Platform for Increased Distributed Renewable Energy Penetration in Smart Grids. IEEE Access 2021, 9, 34040–34053. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Roy, N.K.; Hossain, E.; Pota, H.R. Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh. IEEE Access 2019, 7, 150120–150140. [Google Scholar] [CrossRef]
- Sangwongwanich, A.; Yang, Y.; Blaabjerg, F. Development of flexible active power control strategies for grid-connected photovoltaic inverters by modifying MPPT algorithm. In Proceedings of the IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, Kaohsiung, Taiwan, 3–7 June 2017; pp. 87–92. [Google Scholar]
- Mohandes, B.; Wahbah, M.; Moursi, M.S.E.; El-Fouly, T.H.M. Renewable Energy Management System: Optimum Design and Hourly Dispatch. IEEE Trans. Sustain. Energy 2021, 12, 1615–1628. [Google Scholar]
- Elmouatamid, A.; Bakhouya, M.; Ouladsine, R.; El kamoun, N.; Zine-Dine, K.; Khaidar, M.; Abid, R. Deployment and Experimental Evaluation of Micro-Grid Systems. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–6. [Google Scholar]
- Mi, Y.; Song, Y.; Fu, Y.; Su, X.; Wang, C.; Wang, J. Frequency and Voltage Coordinated Control for Isolated Wind–Diesel Power System Based on Adaptive Sliding Mode and Disturbance Observer. IEEE Trans. Sustain. Energy 2018, 10, 2075–2083. [Google Scholar] [CrossRef]
- Jing, W.; Lai, C.H.; Wallace, S.H.; Wong, M.L. Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: A review. IET Renew. Power Gener. 2017, 11, 461–469. [Google Scholar]
- Xu, X.; Mitra, J.; Wang, T.; Mu, L. Evaluation of Operational Reliability of a Microgrid Using a Short-Term Outage Model. IEEE Trans. Power Syst. 2014, 29, 2238–2247. [Google Scholar] [CrossRef]
- Pradhan, S.; Murshid, S.; Singh, B.; Panigrahi, B.K. Performance Investigation of Multifunctional On-Grid Hybrid Wind–PV System With OASC and MAF-Based Control. IEEE Trans. Power Electron. 2019, 34, 10808–10822. [Google Scholar] [CrossRef]
- Wu, Q.; Sun, Y.; Navid, Z.; Samir, K. Modeling and Modern Control of Wind Power; John Wiley & Sons: New York, NY, USA, 2018. [Google Scholar]
- Kong, X.; Liu, X.; Ma, L.; Lee, K.Y. Hierarchical Distributed Model Predictive Control of Standalone Wind/Solar/Battery Power System. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1570–1581. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, R.; Zhao, J. Output power smoothing control for the PMSG based wind farm by using the allocation of the wind turbines. In Proceedings of the 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017; pp. 1–6. [Google Scholar]
- Gajewski, P.; Pieńkowski, K. Control of wind turbine system with PMSG for low voltage ride through. In Proceedings of the International Symposium on Electrical Machines, Andrychow, Poland, 10–13 June 2018; pp. 1–6. [Google Scholar]
- Gul, W.; Gao, Q.; Lenwari, W. Optimal Design of a 5-MW Double-Stator Single-Rotor PMSG for Offshore Direct Drive Wind Turbines. IEEE Trans. Ind. Appl. 2019, 56, 216–225. [Google Scholar] [CrossRef]
- Delavaripour, H.; Dehkordi, B.M.; Zarchi, H.A.; Adib, E. Increasing Energy Capture From Partially Shaded PV String Using Differential Power Processing. IEEE Trans. Ind. Electron. 2018, 66, 7672–7682. [Google Scholar] [CrossRef]
- de Souza, A.C.; Melo, F.C.; Oliveira, T.L.; Tavares, C.E. Performance Analysis of the Computational Implementation of a Simplified PV Model and MPPT Algorithm. IEEE Lat. Am. Trans. 2016, 14, 792–798. [Google Scholar] [CrossRef]
- Pragallapati, N.; Agarwal, V. Distributed PV Power Extraction Based on a Modified Interleaved SEPIC for Nonuniform Irradiation Conditions. IEEE J. Photovolt. 2015, 5, 1442–1453. [Google Scholar] [CrossRef]
- Vanco, W.E.; Silva, F.B.; Goncalves, F.A.S.; Bissochi, C.A. Evaluation of the Capacitor Bank Design for Self-Excitation in Induction Generators. IEEE Lat. Am. Trans. 2018, 16, 482–488. [Google Scholar] [CrossRef]
- Teng, K.; Lu, Z.; Long, J.; Wang, Y.; Roskilly, A.P. Voltage Build-Up Analysis of Self-Excited Induction Generator With Multi-Timescale Reduced-Order Model. IEEE Access 2019, 7, 48003–48012. [Google Scholar] [CrossRef]
- Prince, M.K.K.; Arif, M.T.; Gargoom, A.; Oo, A.M.T.; Haque, M.E. Modeling, Parameter Measurement, and Control of PMSG based Grid-connected Wind Energy Conversion System. J. Mod. Power Syst. Clean Energy 2021, 9, 1054–1065. [Google Scholar]
- Wang, X.; Sala, G.; Zhang, H.; Gu, C.; Buticchi, G.; Formentini, A.; Gerada, C.; Wheeler, P. Torque Ripple Reduction in Sectored Multi Three-Phase Machines Based on PWM Carrier Phase Shift. IEEE Trans. Ind. Electron. 2019, 67, 4315–4325. [Google Scholar] [CrossRef]
- Rubino, S.; Bojoi, R.; Cittanti, D.; Zarri, L. Decoupled and Modular Torque Control of Multi-Three-Phase Induction Motor Drives. IEEE Trans. Ind. Appl. 2020, 56, 3831–3845. [Google Scholar] [CrossRef]
- Mossa, M.A.; Quynh, N.V.; Echeikh, H.; Do, T.D. Deadbeat-Based Model Predictive Voltage Control for a Sensorless Five-Phase Induction Motor Drive. Math. Probl. Eng. 2020, 2020, 4164526. [Google Scholar] [CrossRef]
- Li, G.; Hu, J.; Li, Y.; Zhu, J. An Improved Model Predictive Direct Torque Control Strategy for Reducing Harmonic Currents and Torque Ripples of Five-Phase Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2018, 66, 5820–5829. [Google Scholar] [CrossRef]
- Mossa, M.A.; Echeikh, H.; Diab, A.A.Z.; HaesAlhelou, H.; Siano, P. Comparative Study of Hysteresis Controller, Resonant Controller and Direct Torque Control of Five-Phase IM under Open-Phase Fault Operation. Energies 2021, 14, 1317. [Google Scholar] [CrossRef]
- Wu, S.; Tian, C.; Zhao, W.; Zhou, J.; Zhang, X. Design and Analysis of an Integrated Modular Motor Drive for More Electric Aircraft. IEEE Trans. Transp. Electrif. 2020, 6, 1412–1420. [Google Scholar] [CrossRef]
- Rhaili, S.; Abbou, A.; Marhraoui, S.; El Hichami, N.; Hemeyine, A.V. Robustness investigation of Vector Control of Five-phase PMSG based Variable-Speed Wind Turbine under faulty condition. In Proceedings of the 2018 Renewable Energies, Power Systems & Green Inclusive Economy (REPS-GIE), Casablanca, Morocco, 23–24 April 2018; pp. 1–6. [Google Scholar]
- Dieng, A.; Le Claire, J.C.; Mboup, A.B.; Benkhoris, M.F.; Ait-Ahmed, M. An improved torque control strategy of “five-phase PMSG-PWM rectifier” set for marine current turbine applications. In Proceedings of the 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), Sonderborg, Denmark, 23–25 April 2019; pp. 1–6. [Google Scholar]
- Mekri, F.; Ben Elghali, S.; Benbouzid, M.E.H. Fault-Tolerant Control Performance Comparison of Three- and Five-Phase PMSG for Marine Current Turbine Applications. IEEE Trans. Sustain. Energy 2012, 4, 425–433. [Google Scholar] [CrossRef] [Green Version]
- Hoerner, M.; Wendel, S.; Dietz, A.; Karamanakos, P.; Kennel, R. Variable Switching Point Predictive Current Control for Multi-Phase Permanent Magnet Synchronous Drives. In Proceedings of the 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Jinan, China, 20–22 November 2021; pp. 184–189. [Google Scholar]
- Yip, S.Y.; Yong, D.W.; Yiauw, K.H.; Tan, X.J.; Wong, J.Y.R. Model Predictive Direct Torque with Fault Tolerance Control for a Permanent Magnet Synchronous Generator Based on Vienna Rectifier. IEEE Access 2022, 10, 94998–95007. [Google Scholar] [CrossRef]
- Jlassi, I.; Cardoso, A.J.M. Open-circuit fault-tolerant operation of permanent magnet synchronous generator drives for wind turbine systems using a computationally efficient model predictive current control. IET Electr. Power Appl. 2021, 15, 837–846. [Google Scholar] [CrossRef]
- Alizadeh, O.; Yazdani, A. A Strategy for Real Power Control in a Direct-Drive PMSG-Based Wind Energy Conversion System. IEEE Trans. Power Deliv. 2013, 28, 1297–1305. [Google Scholar] [CrossRef]
- Yip, S.Y.; Che, H.S.; Tan, C.P.; Chong, W.T. A Lookup Table Model Predictive Direct Torque Control of Permanent-Magnet Synchronous Generator Based on Vienna Rectifier. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1208–1222. [Google Scholar] [CrossRef]
- Mossa, M.A. Effective predictive current control for a sensorless five-phase induction motor drive. Int. J. Power Electron. 2021, 13, 502. [Google Scholar] [CrossRef]
- Kamel, T.; Abdelkader, D.; Said, B.; Padmanaban, S.; Iqbal, A. Extended Kalman Filter Based Sliding Mode Control of Parallel-Connected Two Five-Phase PMSM Drive System. Electronics 2018, 7, 14. [Google Scholar] [CrossRef] [Green Version]
- Hazari, R.; Jahan, E.; Mannan, M.A.; Das, N. Transient Stability Enhancement of a Grid-Connected Large-Scale PV System Using Fuzzy Logic Controller. Electronics 2021, 10, 2437. [Google Scholar] [CrossRef]
- Memon, A.; Mustafa, M.W.; Aman, M.N.; Hafeez, A.; Ullah, M. Improving Transient Behavior of a Brushless Doubly Fed Induction Generator through Reactive Current Control of Grid-Side Converter. Electronics 2021, 10, 1413. [Google Scholar] [CrossRef]
- Venkatesan, K.; Govindarajan, U. Optimal power flow control of hybrid renewable energy system with energy storage: A WOANN strategy. J. Renew. Sustain. Energy 2019, 11, 015501. [Google Scholar] [CrossRef]
- Kucuker, A.; Kamal, T.; Hassan, S.Z.; Li, H.; Mufti, G.M.; Waseem, M. Design and control of photovoltaic/wind/battery based microgrid system. In Proceedings of the 2017 International Conference on Electrical Engineering (ICEE), Lahore, Pakistan, 2–4 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Bhangu, B.; Bentley, P.; Stone, D.; Bingham, C. Nonlinear Observers for Predicting State-of-Charge and State-of-Health of Lead-Acid Batteries for Hybrid-Electric Vehicles. IEEE Trans. Veh. Technol. 2005, 54, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Owusu-Nyarko, I.; Elgenedy, M.A.; Abdelsalam, I.; Ahmed, K.H. Modified Variable Step-Size Incremental Conductance MPPT Technique for Photovoltaic Systems. Electronics 2021, 10, 2331. [Google Scholar] [CrossRef]
- Chankaya, M.; Hussain, I.; Malik, H.; Ahmad, A.; Alotaibi, M.A.; Márquez, F.P.G. Seamless Capable PV Power Generation System without Battery Storage for Rural Residential Load. Electronics 2022, 11, 2413. [Google Scholar] [CrossRef]
- Mossa, M.A.; Gam, O.; Bianchi, N.; Quynh, N.V. Enhanced Control and Power Management for a Renewable Energy-Based Water Pumping System. IEEE Access 2022, 10, 36028–36056. [Google Scholar] [CrossRef]
- Saavedra, J.L.; Baier, C.R.; Marciel, E.I.; Rivera, M.; Carreno, A.; Hernandez, J.C.; Melín, P.E. Comparison of FCS-MPC Strategies in a Grid-Connected Single-Phase Quasi-Z Source Inverter. Electronics 2023, 12, 2052. [Google Scholar] [CrossRef]
- Fu, R. Robust Model Predictive Flux Control of PMSM Drive Using a Compensated Stator Flux Predictor. IEEE Access 2021, 9, 136736–136743. [Google Scholar] [CrossRef]
Phase | Classic PTC [34] | PFC [48] | Designed Predictive Controller | |||
---|---|---|---|---|---|---|
Fundamental | THD | Fundamental | THD | Fundamental | THD | |
‘a’ | 11.0326 A | 2.85% | 9.85307 | 2.27% | 9.7225 A | 2.03% |
‘b’ | 10.2785 A | 1.76% | 9.87774 A | 1.74% | 9.64383 A | 1.68% |
‘c’ | 10.7394 A | 2.4% | 9.92996 A | 2.15% | 9.69451 A | 1.89% |
‘d’ | 10.7578 A | 2.28% | 9.76459 A | 2.22% | 9.69128 A | 1.92% |
‘e’ | 10.2665 A | 1.86% | 9.7734 A | 1.81% | 9.64583 A | 1.67% |
Phase | Classic PTC | PFC | Designed Predictive Controller | |||
---|---|---|---|---|---|---|
Fundamental | THD | Fundamental | THD | Fundamental | THD | |
‘a’ | 10.4947 A | 2.43% | 10.6124 A | 2.16% | 9.6333 A | 1.11% |
‘b’ | 10.1032 A | 1.69% | 10.4282 A | 1.31% | 9.6534 A | 1.02% |
‘c’ | 10.2737 A | 2.53% | 10.5652 A | 1.86% | 9.5876 A | 1.48% |
‘d’ | 10.3919 A | 1.96% | 10.5726 A | 1.25% | 9.6739 A | 0.74% |
‘e’ | 10.0283 A | 2.13% | 10.4509 A | 1.86% | 9.6001 A | 1.43% |
Period | ||||||
---|---|---|---|---|---|---|
Power state | The load is almost covered from PV power and the battery is charging with a power almost equal to the wind power | The load is increased, and the battery is still charging but with a lower value than that in previous period. The load is covered from both the wind and PV powers. | The load is further increased, and the wind and solar powers together are not sufficient to cover it. Thus, the battery started to discharge to cover the power shortage. | The load Is slightly reduced in this period; however the generated powers are still not totally sufficient. Thus the battery continues to discharge but with a smaller rate than previous interval. | The load continues to decrease, and the combined wind and solar powers are now sufficient to cover the load. The battery as a result starts to recharge again. | The load has an increase again, and there is a shortage in the delivered power which is compensated through discharging the battery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mossa, M.A.; El Ouanjli, N.; Gam, O.; Do, T.D. Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method. Electronics 2023, 12, 3408. https://doi.org/10.3390/electronics12163408
Mossa MA, El Ouanjli N, Gam O, Do TD. Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method. Electronics. 2023; 12(16):3408. https://doi.org/10.3390/electronics12163408
Chicago/Turabian StyleMossa, Mahmoud A., Najib El Ouanjli, Olfa Gam, and Ton Duc Do. 2023. "Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method" Electronics 12, no. 16: 3408. https://doi.org/10.3390/electronics12163408
APA StyleMossa, M. A., El Ouanjli, N., Gam, O., & Do, T. D. (2023). Enhancing the Performance of a Renewable Energy System Using a Novel Predictive Control Method. Electronics, 12(16), 3408. https://doi.org/10.3390/electronics12163408