Enhancing Software Project Monitoring with Multidimensional Data Repository Mining
Abstract
:1. Introduction
- -
- The taxonomy of issue-reporting dimensions (structural, semantic, and observation perspectives) relevant to available attributes, based on a generalized ITS model.
- -
- Deriving an analysis methodology enhanced with profiles and metrics characterizing the contents of the issue reports (the filling ratios of attributes and distribution of assigned values), project actor activities, time features, etc.
- -
- Investigating issue-reporting dependencies in time and cross-attribute correlations.
- -
- The identification of software repository deficiencies.
2. Literature Review and Problem Background
3. Software Repository Features and Research Methodology
3.1. Outline of ITS Systems
3.2. Methodology of Issue Exploration
- (1)
- Issue acquisition from external ITS repositories;
- (2)
- Data preprocessing and structuring;
- (3)
- Issue feature extraction and quantitative/qualitative assessment;
- (4)
- Result visualization.
- Attribute filling ratio and the scope of assumed values;
- Distributions of assumed values in diverse perspectives;
- Correlations considering diverse dependencies;
- Project actors’ activities (in reporting contribution and time);
- Analysis of textual attributes;
- Timing features (issue inflow considering types, priorities, resolution time, etc.).
4. Exploring Issue Repository Content
4.1. Category Attributes
- (i)
- The identification of used attributes and their filling ratio in the project lifecycle;
- (ii)
- The distribution of used attribute values, checking their consistency over reporters and time;
- (iii)
- Deriving attribute value profiles conditioned by issue types, projects, reporter classes (developer, user), issue severity level, etc.
ITV(RedHat) = 0.77, 0.03, 0.20); ITV(Spark) = (0.40, 0.30, 0.30);
ITV(Mozilla) = (0.83, 0.16, 0.03); ITV(Ignite) = (0.42, 0.23, 0.35).
4.2. Textual Attributes
- (i)
- The statistical assessment of text sizes;
- (ii)
- The analysis of lexicon used in relation to natural language words (NL) and non-NL textual objects (e.g., code snippets, program class names).
5. The Activities of Project Actors
5.1. Reporters’ Activity
- (1)
- Issue reporting contribution profiles in aggregated or personal views;
- (2)
- The time involvement of issue reporters.
- (i)
- Absolute—taking into consideration the first and last timestamps correlated with the reporter interaction that was considered, together with the ITS repository (within all registered issues);
- (ii)
- Aggregated—summarized periods of activity in which subsequent actors’ interactions with ITS did not differ by more than a specified delay DT.
RAP(C1, Analysts) = (8.1%/4, 9.6%/4, 11.4%/5, 6.9%/5)
5.2. Issue Commenting Activities
CS(Mongo DB) − {0.04, 7}, <(0, 8), (0.05, 2,6), (0.2, 15.6)>,
CC(Mongo DB) − {0.9, 6.7}, <(0.9, 7.1), (0.7, 3.2), (1, 9.7)>
CS(C1) − {4.7, 19.7}, <(3, 13), (4, 22), (4, 15)>,
CC(C1) − {0.95, 4.8}, <(0.9, 7.1), (1, 5.5), (0.9, 4)>
6. Issue Reporting Dependencies (Correlations)
6.1. Issue Data Correlations
Ch|T: {<63, 37, 126, 58, 229>; <10, 2, 8, 2, 55>, <123; 56, 103, 13, 70>; <2, 0, 1, 2, 4>}
Co|P: {<152, 40, 5, 0>; <762, 1202, 65, 4>, <9; 15, 5, 0>; <8, 22, 23, 0>}
Co|T: {<324, 249, 20, 0>; <19, 57, 7, 0>, <137; 238, 9, 0>; <0, 2, 2, 1>}
BCV(MongoDB)2 = <693; 477; 64.36%; 32.29%; 3.35%>,
BCV(MongoDB)3 = <522; 312; 51.28%; 46.15%; 2.56%;>
6.2. Time Dependancies
- (1)
- Graphical plots of the number of issues reported, resolved, or waiting for resolution in time.
- (2)
- Numerical statistics related to issue handling time distributions.
C1: 1/84%, 2/11.3%, 3/4.1%,4/0%, 5/0.3%
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aljedaani, W.; Javed, Y. Bug reports evolution in open source systems. In 5th International Symposium on Data Mining Applications; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 753. [Google Scholar] [CrossRef]
- Nayrolles, M.; Hamou-Lhadj, A. Towards a classification of bugs to facilitate software maintainability tasks. In Proceedings of the ACM/IEEE 1st International Workshop on Software Qualities and Their Dependencies, ACM, Gothenburg, Sweden, 28 May 2018. [Google Scholar] [CrossRef]
- Polaczek, J.; Sosnowski, J. Exploring the software repositories of embedded systems: An industrial experience. Inf. Softw. Technol. 2021, 131, 106489. [Google Scholar] [CrossRef]
- Izadi, M.; Akbari, K.; Heydarnoori, A. Predicting the objective and priority of issue reports in software repositories. Empir. Softw. Eng. 2022, 50, 27. [Google Scholar] [CrossRef]
- Jahanshahi, H.; Cevik, M.; Başar, A. Predicting the Number of Reported Bugs in a Software Repository. In Advances in Artificial Intelligence; Goutte, C., Zhu, X., Eds.; Canadian AI. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12109, pp. 309–320. [Google Scholar] [CrossRef]
- Banerjee, S.; Syed, Z.; Helmick, J.; Culp, M.; Ryan, K.; Cukic, B. Automated triaging of very large bug repositories. Inf. Softw. Technol. 2017, 89, 1–13. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Trabelsi, A.; Islam, S.; Hamou-Lhadj, A.; Khanmohammadi, K. An HMM-based approach for automatic detection and classification of duplicate bug reports. Inf. Softw. Technol. 2019, 113, 98–109. [Google Scholar] [CrossRef]
- Nadeem, A.; Sarwar, M.U.; Malik, M.Z. Automatic issue classifier: A transfer learning framework for classifying issue reports. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), Wuhan, China, 25–28 October 2021; pp. 421–426. [Google Scholar] [CrossRef]
- Aljedaani, W.; Javed, Y.; Alenezi, M. Open source systems bug reports: Meta-Analysis. In Proceedings of the 3rd International Conference on Big Data and Education (ICBDE’20:), ACM, London, UK, 1–3 April 2020. [Google Scholar] [CrossRef]
- Sanei, A.; Cheng, J.; Adams, B. The impacts of sentiments and tones in community-generated issue discussions. In Proceedings of the IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE), Madrid, Spain, 20–21 May 2021; pp. 1–10. [Google Scholar]
- Hanagal, D.; Bhalerao, N. Software Reliability Growth Models; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-981-16-0025-8. [Google Scholar]
- Elmishali, A.; Kalech, M. Issues-Driven features for software fault prediction. Inf. Softw. Technol. 2023, 155, 107102. [Google Scholar] [CrossRef]
- Rana, R.; Staron, M. When do software issues and bugs get reported in large open source software projects? In Proceedings of the International Conference on Software Measurement, IWSM-Mensura, Kraków, Poland, 5–7 October 2015. [Google Scholar]
- Edwards, N.; Jongsuebchoke, D.; Storer, T. Sciit: Aligning Source Control Management and Issue Tracking Architectures. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 29 September–4 October 2019; pp. 402–405. [Google Scholar] [CrossRef]
- Sosnowski, J.; Dobrzyński, B.; Janczarek, P. Analysing problem handling schemes in software projects. Inf. Softw. Technol. 2017, 91, 56–71. [Google Scholar] [CrossRef]
- Rakha, M.S.; Bezemer, C.-P.; Hassan, A.E. Revisiting the performance of automated approaches for the retrieval of duplicate reports in issue tracking systems that perform just-in-time duplicate retrieval. Empir. Softw. Eng. 2018, 23, 2597–2621. [Google Scholar] [CrossRef]
- Lunesu, M.I.; Tonelli, R.; Marchesi, L.; Marchesi, M. Assessing the Risk of Software Development in Agile Methodologies Using Simulation. IEEE Access 2021, 9, 134240–134258. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, S.K.; Suri, J.S. Ranking of software developers based on expertise score for bug triaging. Inf. Softw. Technol. 2019, 112, 1–17. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, H.U.; Khan, A.W.; Khan, S.U. Prioritizing the Issues extracted for Getting Right People on Right Project in Software Project Management from Vendors’ Perspective. IEEE Access 2021, 9, 8718–8732. [Google Scholar] [CrossRef]
- Santos, F. Supporting the Task-driven Skill Identification in Open Source Project Issue Tracking Systems. ACM SIGSOFT Softw. Eng. Notes 2023, 48, 54–58. [Google Scholar] [CrossRef]
- Goyal, A.; Sardana, N. Feature ranking and aggregation for bug triaging in open-source issue tracking systems. In Proceedings of the 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 871–876. [Google Scholar] [CrossRef]
- Sarkar, A.; Rigby, P.C.; Bartalos, B. Improving bug triaging with high confidence predictions at Ericsson. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 29 September–4 October 2019; pp. 81–91. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S. An Empirical Study on Using Multi-Labels for Issues in GitHub. IEEE Access 2021, 9, 134984–134997. [Google Scholar] [CrossRef]
- Herbold, S.; Trautsch, A.; Trautsch, F. On the feasibility of automated prediction of bug and non-bug issues. Empir. Softw. Eng. 2020, 25, 5333–5369. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, P.; Su, X.; Wang, T. LTRWES: A new framework for security bug report detection. Inf. Softw. Technol. 2020, 124, 106314. [Google Scholar] [CrossRef]
- Peters, F.; Tun, T.T.; Yu, Y.; Nuseibeh, B. Text Filtering and Ranking for Security Bug Report Prediction. IEEE Trans. Softw. Eng. 2019, 45, 615–631. [Google Scholar] [CrossRef]
- Panichella, S.; Canfora, G.; Di Sorbo, A. “Won’t We Fix this Issue?” Qualitative characterization and automated identification of wontfix issues on GitHub. Inf. Softw. Technol. 2021, 139, 106665. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, W.; Pu, M.; Chen, J.; Mu, D. Invalid bug reports complicate the software aging situation. Softw. Qual. J. 2020, 28, 195–220. [Google Scholar] [CrossRef]
- Umer, Q.; Liu, H.; Sultan, Y. Sentiment based approval prediction for enhancement reports. J. Syst. Softw. 2019, 155, 57–69. [Google Scholar] [CrossRef]
- Merten, T.; Falis, M.; Hubner, P.; Quirchmayr, T.; Bursner, S.; Paech, B. Software feature request detection in issue tracking systems. In Proceedings of the IEEE 24th International Requirements Engineering Conference (RE), Beijing, China, 12–16 September 2016; pp. 166–175. [Google Scholar] [CrossRef]
- Alonso-Abad, J.M.; López-Nozal, C.; Maudes-Raedo, J.M.; Marticorena-Sánchez, R. Label prediction on issue tracking systems using text mining. Prog. Artif. Intell. 2019, 8, 325–342. [Google Scholar] [CrossRef]
- Ramírez-Mora, S.L.; Oktaba, H.; Gómez-Adorno, H.; Sierra, G. Exploring the communication functions of comments during bug fixing in Open Source Software projects. Inf. Softw. Technol. 2021, 136, 106584. [Google Scholar] [CrossRef]
- Arya, D.; Wang, W.; Guo, J.L.; Cheng, J. Analysis and detection of information types of open source software issue discussions. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 454–464. [Google Scholar] [CrossRef]
- Huang, Y.; da Costa, D.A.; Zhang, F.; Zou, Y. An empirical study on the issue reports with questions raised during the issue resolving process. Empir. Softw. Eng. 2019, 24, 718–750. [Google Scholar] [CrossRef]
- Choetkiertikul, M.; Dam, H.K.; Tran, T.; Pham, T.; Ragkhitwetsagul, C.; Ghose, A. Automatically recommending components for issue reports using deep learning. Empir. Softw. Eng. 2021, 26, 14. [Google Scholar] [CrossRef]
- Rath, M.; Mäder, P. Structured information in bug report descriptions—Influence on IR-based bug localization and developers. Softw. Qual. J. 2019, 27, 1315–1337. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z.; Chen, X.; Cao, K.; Gu, Q. Laprob: A Label propagation-Based software bug localization method. Inf. Softw. Technol. 2020, 130, 106410. [Google Scholar] [CrossRef]
- Gomes, L.A.F.; Torres, R.d.S.; Côrtes, M.L. Bug report severity level prediction in open source software: A survey and research opportunities. Inf. Softw. Technol. 2019, 115, 58–78. [Google Scholar] [CrossRef]
- Qamar, K.A.; Sülün, E.; Tüzün, E. Taxonomy of bug tracking process smells: Perceptions of practitioners and an empirical analysis. Inf. Softw. Technol. 2022, 150, 106972. [Google Scholar] [CrossRef]
- Tu, F.; Zhu, J.; Zheng, Q.; Zhou, M. Be careful of when: An empirical study on time-related misuse of issue tracking data. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista, FL, USA, 4–8 November 2018; pp. 307–318. [Google Scholar] [CrossRef]
- Montgomery, L.; Lüders, C.; Maalej, W. An alternative issue tracking dataset of public jira repositories. In Proceedings of the 19th International Conference on Mining Software Repositories, New York, NY, USA, 23–24 May 2022; pp. 73–77. [Google Scholar] [CrossRef]
- Martinez-Fernandez, S.; Vollmer, A.M.; Jedlitschka, A.; Franch, X.; Lopez, L.; Ram, P.; Rodriguez, P.; Aaramaa, S.; Bagnato, A.; Choras, M.; et al. Continuously Assessing and Improving Software Quality with Software Analytics Tools: A Case Study. IEEE Access 2019, 7, 68219–68239. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, C.; Shi, J.; Hoang, T.; Kochhar, P.; Lu, Q.; Xing, Z.; Lo, D. What Do Users Ask in Open-Source AI Repositories? An Empirical Study of GitHub Issues. In Proceedings of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 17 March 2023; pp. 79–91. [Google Scholar] [CrossRef]
- Lasynskyi, M.; Sosnowski, J. Extending the Space of Software Test Monitoring: Practical Experience. IEEE Access 2021, 9, 166166–166183. [Google Scholar] [CrossRef]
- Dobrzyński, B.; Sosnowski, J. Text mining studies of software repository contents. In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering/Kaindl Hermann, Mannion Mike, Maciaszek Leszek A. (red.), Prague, Czech Republic, 24–25 April 2023; SciTePress: Setubal, Portugal, 2023; pp. 562–569. [Google Scholar] [CrossRef]
- Li, Y.; Soliman, M.; Avgeriou, P. Identifying self-admitted technical debt in issue tracking systems using machine learning. Empir. Softw. Eng. 2022, 27, 131. [Google Scholar] [CrossRef]
- Seiler, M.; Paech, B. Using tags to support feature management across issue tracking systems and version control Systems. In Requirements Engineering: Foundation for Software Quality. REFSQ 2017; Grünbacher, P., Perini, A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10153. [Google Scholar] [CrossRef]
- Cândido, J.; Aniche, M.; van Deursen, A. Log-based software monitoring: A systematic mapping study. PeerJ Comput. Sci. 2021, 7, e489. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Molinos, M.J.; Sánchez-García, A.J.; Barrientos-Martínez, R.E.; Pérez-Arriaga, J.C.; Ocharán-Hernández, J.O. Software Defect Prediction with Bayesian Approaches. Mathematics 2023, 11, 2524. [Google Scholar] [CrossRef]
- Lüders, C.M.; Bouraffa, A.; Maalej, W. Beyond duplicates: Towards understanding and predicting link types in issue tracking systems. In Proceedings of the 19th International Conference on Mining Software Repositories, New York, NY, USA, 23–24 May 2022; pp. 48–60. [Google Scholar] [CrossRef]
- Raatikainen, M.; Motger, Q.; Lüders, C.M.; Franch, X.; Myllyaho, L.; Kettunen, E.; Marco, J.; Tiihonen, J.; Halonen, M.; Männistö, T. Improved Management of Issue Dependencies in Issue Trackers of Large Collaborative Projects. IEEE Trans. Softw. Eng. 2022, 49, 2128–2148. [Google Scholar] [CrossRef]
- Diamantopoulos, T.; Nastos, D.-N.; Symeonidis, A. Semantically-enriched Jira issue tracking data. In Proceedings of the IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 15–16 May 2023; pp. 218–222. [Google Scholar] [CrossRef]
- Urrea-Contreras, S.J.; Flores-Rios, B.L.; González-Navarro, F.F.; Astorga-Vargas, M.A.; Ibarra-Esquer, J.E.; Pacheco, I.A.G.; Agüero, C.L.P. Process mining model integrated with control Flow, case, organizational and time perspectives in a software development project. In Proceedings of the 10th International Conference in Software Engineering Research and Innovation (CONISOFT), Ciudad Modelo, San José, Chiapa, Mexico, 24–28 October 2022; pp. 92–101. [Google Scholar] [CrossRef]
Research Problem | Literature References | Basic Data |
---|---|---|
Project lifecycle tracing | [1,2,3,12,13,14,15,16,17,42,43] | Issue inflow, timing features |
Issue classification | [2,8,9,10,23,24,25,26,27,28,29,30,31,32,33,39] | Issue description |
Issue duplication | [7,32,40,41] | Issue description |
Task allocation, bug triaging, and localization | [6,18,19,20,21,22,36,37,40] | Issue description, actor skills, component, severity, priority, operating system attributes |
Predictions | [4,5,11,12,24,29,34,35,38] | Issue type, handling times, code features |
Attributes | C1(17,658) | Flink (28,714) | Ignite (17,396) | Spark (39,500) | Moz (62,207) | Red (22,066) |
---|---|---|---|---|---|---|
Resolution | 86.5%/19 | 83.0%/21 | 74.2%/19 | 92.7%/19 | 86.6%/9 | 88.4%/13 |
Fix Vers. | 65.1%/195 | 62.1%/388 | 61.1%/68 | 59.5%/324 | - | 43.3%/6605 |
Aff. Vers. | - | 51.0%/836 | 42.3%/168 | 76.3%/1176 | 100%/108 | 100%/11 |
Compon. | 50.5%/450 | 89.5%/909 | 63.0%/261 | 95.5%/620 | 100%/26 | 100%/1387 |
Environ. | 15.4%/2252 | 3.4%/873 | 2.2%/355 | 7.1%/324 | - | 0.05%/12 |
Attributes | Cassandra | Flink | Ignite | Spark | Mozilla | Red Hat | |
---|---|---|---|---|---|---|---|
Priority | Major | 59.1 | 66.8 | 75.8 | 63.7 | 21 | 45.2 |
Minor | 37.1 | 18.2 | 10.5 | 24.9 | 3.34 | 13.9 | |
Critical | 3.6 | 7.9 | 7.9 | 4.0 | 19.7 | 33.1 | |
Blocker | 0.2 | 7.1 | 4.3 | 3.5 | 26.7 | 7.8 | |
Resolut. | Resolved | 68.8 (5) | 76.3 (5) | 81.2 (5) | 66.5 (5) | 23.6 | 64.5 (4) |
Won’t Fix | 15.9 (8) | 13.4 (8) | 11.0 (7) | 15.7 (8) | 43.3 (5) | 24.5 (5) | |
Duplicate | 10.3 | 7.5 | 6.1 | 6.7 | 32.9 | 8.1 | |
Type | Bug | 55.2 | 38.9 | 41.7 | 39.5 | 82.8 | 96.3 |
Improv | 31.5 | 31.4 | 23.1 | 30.2 | 14.6 | 1.0 | |
Task | 7.8 | 21.9 | 28.5 | 18.7 | 2.6 | - | |
New Feat. | 5.5 | 6.4 | 6.4 | 5.2 | - | 2.2 | |
Status | Resolved | 86.5 | 15.2 | 46.2 | 85.5 | 88.3 (2/) | - |
Closed | - | 67.8 | 27.9 | 7.3 | - | 88.5 | |
Re(open) | 10.5 | 16.1(2) | 4.5 | 4.5 (2) | 7.1 (2) | 5.5 |
Project | Comments | Resolution | Component | Priority |
---|---|---|---|---|
Cassandra | (93, 95, 90, 90) | (86, 91,81, 81) | (50, 49, 49, 59) | (100, 100, 100, 100) |
Flink | (94, 93, 91, 93) | (87, 83, 82, 80) | (86, 90, 95, 89) | (93, 94, 93, 96) |
Ignite | (74, 79, 69, 73) | (74, 75, 66, 78) | (63, 62, 60, 60) | (100, 100, 100, 100) |
Spark | (93, 93, 90, 90) | (93, 95, 90, 93) | (97, 95, 97, 98) | (100, 100, 100, 100) |
Mozilla | (97, 98, 93, 97) | (67, 89, 71, 92) | (100, 100, 100, 100) | (2.6, 2.4, 2.5, 8.8) |
Red Hat | (81, 85, 89, 66) | (88, 88, 85, 92) | (100, 100, 100, 100) | (41, 40, 60, 39) |
Parameter | Cassandra | Spark | Flink | Ignite | Mozilla | Red |
---|---|---|---|---|---|---|
Q1 | 32 | 18 | 20 | 16 | 54 | 37 |
Q2 | 64 | 44 | 42 | 35 | 90 | 92 |
Q3 | 124 | 94 | 84 | 72 | 141 | 198 |
Parameter | Cassandra | Spark | Flink | Ignite | Mozilla | Red |
---|---|---|---|---|---|---|
Q1 | 10 | 9 | 11 | 7 | 13 | 13 |
Q2 | 26 | 10 | 37 | 12 | 26 | 39 |
Q3 | 61 | 32 | 86 | 35 | 58 | 64 |
CS | CN | BA | IA | L | PR | JP | ||
---|---|---|---|---|---|---|---|---|
MongoDB | 1% | 28% | 51% | 5% | 2% | 9% | 3% | 1% |
C1 | 51% | 1% | 14% | 22% | 0% | 12% | 0% | 0% |
Project Period | Cassandra | Spark | ||||
---|---|---|---|---|---|---|
50% | 80% | 100% | 50% | 80% | 100% | |
1 | 4 | 16 | 99 | 1 | 2 | 4 |
2 | 9 | 51 | 245 | 2 | 7 | 18 |
5 | 29 | 151 | 336 | 24 | 175 | 911 |
6 | 29 | 174 | 533 | 25 | 282 | 1473 |
12 | 11 | 57 | 198 | 20 | 145 | 828 |
13 | 10 | 37 | 176 | 15 | 82 | 295 |
Total | 51 | 429 | 2917 | 64 | 940 | 6752 |
Parameter | Cassandra | Spark | Flink | Ignite | Mozilla | Red Hat |
---|---|---|---|---|---|---|
Med—a | 2.0 | 2.0 | 3.0 | 2.0 | 1.0 | 4.0 |
Med—b | 3.0 | 2.0 | 4.0 | 4.0 | 1.0 | 29.0 |
Q3—a | 15.0 | 9.0 | 22.0 | 28.0 | 2.0 | 34.0 |
Q3—b | 85.0 | 60.0 | 70.0 | 161.0 | 3.0 | 410.5 |
Max—a | 3501 | 3094 | 2809 | 2399 | 6451 | 1871 |
Max—b | 4474 | 3605 | 2937 | 2646 | 8229 | 3842 |
Av—a | 45.7 | 26.5 | 47.9 | 114.5 | 11.4 | 62.8 |
Av—b | 142.2 | 104.4 | 137.9 | 209.3 | 76.9 | 302.1 |
Param | Cassandra | Spark | Flink | Ignite | Mozilla | Red Hat |
---|---|---|---|---|---|---|
Med—a | 4/3 | 2/2 | 3/2 | 2/2 | 4/3 | 2/2 |
Med—b | 5.3 | 1.9 | 4.2 | 2.3 | 16.2 | 47.5 |
Q3—a | 8/3 | 4/3 | 7/3 | 4/3 | 7/4 | 4/3 |
Q3—b | 48.8 | 24.0 | 63.7 | 21.7 | 300.0 | 201.1 |
Max—a | 295/29 | 126/43 | 370/22 | 144/13 | 506/107 | 161/42 |
Max—b | 3619.6 | 3195.6 | 2803.4 | 2275.7 | 7488.4 | 6152.7 |
Av—a | 6.9/2.9 | 3.3/2.3 | 6.0/22.0 | 3.2/2.4 | 6.9/3.2 | 3.2/2.4 |
Av—b | 100.9 | 73.3 | 123.6 | 55.0 | 360.6 | 159.3 |
Param | Cassandra | Spark | Flink | Ignite | Mozilla | MongoDB |
---|---|---|---|---|---|---|
Med—a | 19.4 | 10.6 | 21.9 | 43.0 | 40.0 | 232.2 |
Med—b | 11.1 | 7.8 | 11.8 | 15.8 | 15.1 | 28.4 |
Q3—a | 193.9 | 152.8 | 191.0 | 471.6 | 538.8 | 326.1 |
Q3—b | 71.6 | 76.5 | 60.3 | 67.8 | 276.0 | 52.3 |
Max—a | 4496.7 | 3206.0 | 2974.3 | 2811.1 | 8296.8 | 499.6 |
Max—b | 3359.3 | 3206.0 | 2564.7 | 2362.0 | 7033.6 | 358.2 |
Av—a | 324.5 | 188.0 | 219.7 | 400.9 | 726.3 | 242.5 |
Av—b | 110.5 | 153.9 | 111.2 | 108.3 | 304.7 | 45.2 |
Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Cas | 0.15 | 0.14 | 0.07 | 0.09 | 0.10 | 0.12 | 0.13 | 0.13 | 0.14 | 0.14 |
Spark | 0.38 | 0.27 | 0.23 | 0.14 | 0.13 | 0.13 | 0.14 | 0.06 | 0.08 | 0.07 |
Flink | 0.22 | 0.19 | 0.18 | 0.21 | 0.20 | 0.21 | 0.19 | 0.15 | 0.17 | 0.16 |
Moz | 0.25 | 0.26 | 0.18 | 0.17 | 0.16 | 0.16 | 0.14 | 0.13 | 0.13 | 0.12 |
MonDB | 0.38 | 0.06 | 0.05 | 0.07 | 0.07 | 0.06 | 0.07 | 0.10 | 0.10 | 0.18 |
Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Cas | 450 | 490 | 700 | 1150 | 1520 | 1750 | 2000 | 2250 | 2300 | 2320 |
Spark | 150 | 400 | 1500 | 2100 | 2600 | 3350 | 3800 | 1850 | 1900 | 2650 |
Flink | 200 | 450 | 820 | 1370 | 1860 | 2500 | 3460 | 3350 | 4600 | 5200 |
Moz | 1100 | 2600 | 3500 | 5150 | 6070 | 6230 | 6350 | 6750 | 7000 | 7250 |
MonDB | 123 | 330 | 543 | 795 | 1021 | 1271 | 1557 | 1992 | 2458 | 3263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reszka, Ł.; Sosnowski, J.; Dobrzyński, B. Enhancing Software Project Monitoring with Multidimensional Data Repository Mining. Electronics 2023, 12, 3774. https://doi.org/10.3390/electronics12183774
Reszka Ł, Sosnowski J, Dobrzyński B. Enhancing Software Project Monitoring with Multidimensional Data Repository Mining. Electronics. 2023; 12(18):3774. https://doi.org/10.3390/electronics12183774
Chicago/Turabian StyleReszka, Łukasz, Janusz Sosnowski, and Bartosz Dobrzyński. 2023. "Enhancing Software Project Monitoring with Multidimensional Data Repository Mining" Electronics 12, no. 18: 3774. https://doi.org/10.3390/electronics12183774
APA StyleReszka, Ł., Sosnowski, J., & Dobrzyński, B. (2023). Enhancing Software Project Monitoring with Multidimensional Data Repository Mining. Electronics, 12(18), 3774. https://doi.org/10.3390/electronics12183774