Data Rate Selection Strategies for Periodic Transmission of Safety Messages in VANET
Abstract
:1. Introduction
2. Background Review
2.1. Power- and Message Rate-Based Approaches
2.2. Data Rate-Based Approaches
3. Proposed Data Rate-Based Congestion Control (DRCC) Approach
Algorithm 1 Data Rate-Based Congestion Control (DRCC) Algorithm. |
|
4. Simulation Results
4.1. Simulation Setup
- LOW load: BSM packets of 256 bytes broadcast at intervals of 0.1 s and 0.05 s.
- MEDIUM load: BSM packets of 1024 bytes and 256 bytes broadcast at intervals of 0.1 s and 0.02 s, respectively.
- HIGH load: BSM packets of 1024 bytes broadcast at intervals of 0.05 s.
4.2. Evaluation of DRCC for Different Threshold Values
4.3. Comparison of Channel Congestion
4.4. Comparison of Received Packets
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Highway Traffic Safety Administration. Vehicle-to-Vehicle Communications: Readiness of V2V Technology for Application. August 2014. Available online: https://rosap.ntl.bts.gov/view/dot/27999 (accessed on 1 September 2023).
- Zeadally, S.; Hunt, R.; Chen, Y.S.; Irwin, A.; Hassan, A. Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommun. Syst. 2012, 50, 217–241. [Google Scholar] [CrossRef]
- Jha, R.K.; Limkar, S.V.; Dalal, D.U. A performance comparison of routing protocols (DSR and TORA) for security issue in MANET (Mobile Ad Hoc Networks). IJCA Int. J. Comput. Appl. 2010, 2, 78–83. [Google Scholar]
- Calabuig, J.; Monserrat, J.F.; Gozalvez, D.; Klemp, O. Safety on the roads: LTE alternatives for sending ITS messages. IEEE Veh. Technol. Mag. 2014, 9, 61–70. [Google Scholar] [CrossRef]
- Nassar, L.; Jundi, A.; Golestan, K.; Sattar, F.; Karray, F.; Kamel, M.; Boumaiza, S. Vehicular ad-hoc networks (VANETs): Capabilities, challenges in context-aware processing and communication gateway. In Proceedings of the International Conference on Autonomous and Intelligent Systems, Berlin, Germany, 2–7 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 42–49. [Google Scholar]
- Hartenstein, H.; Laberteaux, K. (Eds.) VANET: Vehicular Applications and Inter-Networking Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 1. [Google Scholar]
- Ahmed, A.A.; Malebary, S.J.; Ali, W.; Barukab, O.M. Smart Traffic Shaping Based on Distributed Reinforcement Learning for Multimedia Streaming over 5G-VANET Communication Technology. Mathematics 2023, 11, 921. [Google Scholar] [CrossRef]
- Balen, J.; Tomasic, B.; Semialjac, K.; Varga, H. Survey on using 5G technology in VANETs. In Proceedings of the 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 5–10 May 2022. [Google Scholar]
- Alalewi, A.; Dayoub, I.; Cherkaoui, S. On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey. IEEE Access 2021, 9, 199. [Google Scholar] [CrossRef]
- SAE J2735; Dedicated Short Range Communications (DSRC) Message Set Dictionary. Society of Automotive Engineers, DSRC Committee: Warrendale, PA, USA, 2009.
- ETSI EN 302 637-2 (V1.3.0); Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service; Vehicular Communications; ETSI: Sophia Antipolis, France, 2013; Available online: https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.02_60/en_30263702v010302p.pdf (accessed on 10 May 2019).
- Liu, Y.; Dion, F.; Biswas, S. Dedicated short-range wireless communications for intelligent transportation system applications: State of the art. Transp. Res. Rec. 2005, 1910, 29–37. [Google Scholar] [CrossRef]
- Kenney, J.B. Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Amendment of the Commission’s Rules Regarding Dedicated Short-Range Communication Services in the 5.850–5.925 GHz Band (5.9 GHz Band); Technical Report; U.S. Federal Communications Commission: Washington, DC, USA, 2006.
- Liu, X.; Jaekel, A. Congestion control in V2V safety communication: Problem, analysis, approaches. Electronics 2019, 8, 540. [Google Scholar] [CrossRef]
- Bansal, G.; Kenney, J.B.; Rohrs, C.E. LIMERIC: A linear adaptive message rate algorithm for DSRC congestion control. IEEE Trans. Veh. Technol. 2013, 62, 4182–4197. [Google Scholar] [CrossRef]
- ETSI. Intelligent Transport Systems (ITS); European Profile Standard on the Physical and Medium Access Layer of 5 GHz ITS. 2009. Available online: https://www.etsi.org/deliver/etsi_es/202600_202699/202663/01.01.00_50/es_202663v010100m.pdf (accessed on 20 December 2018).
- Huang, C.L.; Fallah, Y.P.; Sengupta, R.; Krishnan, H. Intervehicle transmission rate control for cooperative active safety system. IEEE Trans. Intell. Transp. Syst. 2011, 12, 645–658. [Google Scholar] [CrossRef]
- Torrent-Moreno, M.; Mittag, J.; Santi, P.; Hartenstein, H. Vehicle-to-vehicle communication: Fair transmit power control for safety-critical information. IEEE Trans. Veh. Technol. 2009, 58, 3684–3703. [Google Scholar] [CrossRef]
- Taherkhani, N. Congestion Control in Vehicular Ad Hoc Networks. Ph.D. Dissertation, Ecole Polytechnique, Montreal, QC, Canada, 2015. [Google Scholar]
- Weinfeld, A. Methods to reduce DSRC channel congestion and improve V2V communication reliability. In Proceedings of the 17th ITS World Congress, Busan, Republic of Korea, 25–29 October 2010. [Google Scholar]
- Jiang, D.; Chen, Q.; Delgrossi, L. Optimal Data Rate Selection for Vehicle Safety Communications. In Proceedings of the 5th ACM International Workshop on VehiculAr Inter-NETworking (VANET ’08), San Francisco, CA, USA, 3–8 August 2008; pp. 30–38. [Google Scholar] [CrossRef]
- Abdul Rahim, N.F.B.; Khang, A.W.Y.; Hassan, A.; Elias, S.J.; Mohamat Gani, J.A.; Jasmis, J.; Abedalrahim, J. Channel Congestion Control in VANET for Safety and Non-Safety Communication: A Review. In Proceedings of the 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Kedah, Malaysia, 10–18 April 2021. [Google Scholar]
- Mohammed, M.A.; Shareef, S.M.; Ghafoor, K.Z. A comprehensive survey on congestion control techniques and the research challenges on VANET. ZANCO J. Pure Appl. Sci. 2022, 34, 50–78. [Google Scholar]
- Nazar, K.; Saeed, Y.; Ali, A.; Algarni, A.D.; Soliman, N.F.; Ateya, A.A.; Muthanna, M.S.A.; Jamil, F. Towards Intelligent Zone-Based Content Pre-Caching Approach in VANET for Congestion Control. Sensors 2022, 22, 9157. [Google Scholar] [CrossRef] [PubMed]
- do Vale Saraiva, T.; Campos, C.A.V.; dos Reis Fontes, R.; Rothenberg, C.E.; Sorour, S.; Valaee, S. An Application-Driven Framework for Intelligent Transportation Systems Using 5G Network Slicing. IEEE Trans. Intell. Transp. Syst. 2021, 22, 5247–5260. [Google Scholar] [CrossRef]
- Yeh, L.-Y.; Shen, N.-X.; Hwang, R.-H. Blockchain-Based Privacy-Preserving and Sustainable Data Query Service Over 5G-VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15909–15921. [Google Scholar] [CrossRef]
- Hussain, R.; Hussain, F.; Zeadally, S. Integration of VANET and 5G Security: A review of design and implementation issues. Future Gener. Comput. Syst. 2019, 101, 843–864. [Google Scholar] [CrossRef]
- Alsmirat, M.A.; Al-Rifai, S.Y.; Sababha, B.H. Reducing Message Loss in DSRC Networks using Dynamic Distribution of Safety Messages over EDCA Access Categories. In Proceedings of the WCECS 2015, San Francisco, CA, USA, 21–23 October 2015. [Google Scholar]
- Zhang, L.; Valaee, S. Congestion Control for Vehicular Networks With Safety-Awareness. IEEE/ACM Trans. Netw. 2016, 24, 3290–3299. [Google Scholar] [CrossRef]
- Liang, Z.; Sedighi, F.; Balador, A. Evaluation and optimization of Decentralized Congestion Control Algorithms for Vehicular Networks. In Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza, Italy, 7–9 October 2019. [Google Scholar]
- Wei, Y.; Math, C.B.; Li, H.; de Groot, S.H. SAE-DCC Evaluation and Comparison with Message Rate and Data Rate Based Congestion Control Algorithms of V2X Communication. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Facchina, C.; Jaekel, A. Speed Based Distributed Congestion Control Scheme for Vehicular Networks. In Proceedings of the 10th IEEE ISCC MoCS Workshop (MoCS 2020), Rennes, France, 4 July 2020. [Google Scholar]
- Akinlade, O.; Saini, I.; Liu, X.; Jaekel, A. Traffic Density Based Distributed Congestion Control Strategy for Vehicular Communication. In Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS 2019), Santorini Island, Greece, 29–31 May 2019. [Google Scholar]
- Torrent-Moreno, M.; Santi, P.; Hartenstein, H. Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, Reston, VA, USA, 3–7 September 2006; Volume 2, pp. 479–488. [Google Scholar]
- Mo, Y.; Yu, D.; Song, J.; Zheng, K.; Guo, Y. A beacon transmission power control algorithm based on wireless channel load forecasting in VANETs. PLoS ONE 2015, 10, e0142775. [Google Scholar] [CrossRef]
- Kloiber, B.; Härri, J.; Strang, T. Dice the tx power—Improving awareness quality in vanets by random transmit power selection. In Proceedings of the 2012 IEEE Vehicular Networking Conference (VNC), Seoul, Republic of Korea, 14–16 November 2012; pp. 56–63. [Google Scholar]
- Bansal, G.; Kenney, J.B. Achieving weighted-fairnessin message rate-based congestion control for DSRC systems. In Proceedings of the 2013 IEEE 5th International Symposium on Wireless Vehicular Communications (WiVeC), Dresden, Germany, 2–3 June 2013; pp. 1–5. [Google Scholar]
- Bansal, G.; Lu, H.; Kenney, J.B.; Poellabauer, C. EMBARC: Error model based adaptive rate control for vehicle-to-vehicle communications. In Proceedings of the Tenth ACM International Workshop on Vehicular Inter-Networking, Systems, and Applications, Dresden, Germany, 2–7 June 2013; pp. 41–50. [Google Scholar]
- Tielert, T.; Jiang, D.; Chen, Q.; Delgrossi, L.; Hartenstein, H. Design methodology and evaluation of rate adaptation based congestion control for vehicle safety communications. In Proceedings of the 2011 IEEE Vehicular Networking Conference (VNC), Amsterdam, The Netherlands, 14–16 November 2011; pp. 116–123. [Google Scholar]
- Kim, G.; Lee, S.; Park, H.; Kim, D. A request based adaptive beacon rate control scheme for vehicular ad-hoc networks. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 67–69. [Google Scholar]
- Sharma, S.; Chahal, M.; Harit, S. Transmission rate-based congestion control in vehicular ad hoc networks. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; pp. 303–307. [Google Scholar]
- Chaabouni, N.; Hafid, A.; Sahu, P.K. A collision-based beacon rate adaptation scheme (CBA) for VANETs. In Proceedings of the 2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Kattankulathur, India, 15–18 December 2013; pp. 1–6. [Google Scholar]
- Amer, H.; Al-Kashoash, H.; Khami, M.J.; Mayfield, M.; Mihaylova, L. Non-cooperative game based congestion control for data rate optimization in vehicular ad hoc networks. Ad Hoc Netw. 2020, 107, 102181. [Google Scholar] [CrossRef]
- Subramaniam, M.; Rambabu, C.; Chandrasekaran, G.; Kumar, N.S. A Traffic Density-Based Congestion Control Method for VANETs. Wirel. Commun. Mob. Comput. 2022, 2022, 7551535. [Google Scholar] [CrossRef]
- Mohammadi, M.; Balador, A.; Fernández, Z.; Val, I. Adaptive Distributed Beacon Congestion Control with Machine Learning in VANETs. In Proceedings of the 2021 17th International Conference on Mobility, Sensing and Networking (MSN), Exeter, UK, 13–15 December 2021; pp. 766–771. [Google Scholar]
- Fang, Y.; Liu, X.; Li, Z.; Cui, L.; Wei, K.; Deng, Q. Efficient Congestion Control With Information Loss Minimization for Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol. 2023, 72, 3879–3888. [Google Scholar] [CrossRef]
- Liu, X.; Amour, B.S.; Jaekel, A. A Reinforcement Learning-Based Congestion Control Approach for V2V Communication in VANET. Appl. Sci. 2023, 13, 3640. [Google Scholar] [CrossRef]
- Willis, J.T.; Jaekel, A.; Saini, I. Decentralized Congestion Control Algorithm for Vehicular Networks Using Oscillating Transmission Power. In Proceedings of the WTS17, Chicago, IL, USA, 26–28 April 2017. [Google Scholar]
- Baldessari, R.; Scanferla, D.; Le, L.; Zhang, W.; Festag, A. Joining forces for vanets: A combined transmit power and rate control algorithm. In Proceedings of the 6th International Workshop on Intelligent Transportation (WIT), Hamburg, Germany, 4 March 2010. [Google Scholar]
- Kloiber, B.; Härri, J.; Strang, T.; Sand, S.; Rico-Garcia, C. Random Transmit Power Control for DSRC and its Application to Cooperative Safety. IEEE Trans. Dependable Secur. Comput. 2015, 13, 18–31. [Google Scholar] [CrossRef]
- Goudarzi, F.; Asgari, H.; Al-Raweshidy, H.; Peytchev, E. Joint Beacon Power and Rate Control for Vehicular Ad Hoc Networks. In Proceedings of the 2019 IEEE SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI, Leicester, UK, 19–23 August 2019. [Google Scholar]
- Kezia, M.; Anusuya, K.V. A Comparative Study on Machine Learning Algorithms for Congestion Control in VANET. In Proceedings of the 2022 International Conference on Intelligent Innovations in Engineering and Technology (ICIIET), Coimbatore, India, 22–24 September 2022; pp. 38–44. [Google Scholar]
- Aznar-Poveda, J.; Garcia-Sanchez, A.J.; Egea-Lopez, E.; Garcia-Haro, J. Mdprp: A q-learning approach for the joint control of beaconing rate and transmission power in vanets. IEEE Access 2021, 9, 10166–10178. [Google Scholar] [CrossRef]
- Deeksha, M.; Patil, A.; Kulkarni, M.; Shet, N.S.V.; Muthuchidambaranathan, P. Multistate active combined power and message/data rate adaptive decentralized congestion control mechanisms for vehicular ad hoc networks. J. Phys. Conf. Ser. 2022, 2161, 012018. [Google Scholar] [CrossRef]
- Minelli, M.; Tohmé, S. The potential of transmit data rate control for channel congestion mitigation in VANET. In Proceedings of the IWCMC 2016, Paphos, Cyprus, 5–9 September 2016. [Google Scholar]
- Patil, A.; Deeksha, M.; Shekar, N.; Shet, V.; Kulkarni, M. Transmit Data Rate Control Based Decentralized Congestion Control Mechanism for VANETs. In Proceedings of the 2019 International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; pp. 1–5. [Google Scholar]
- Math, C.B.; Ozgur, A.; de Groot, S.H.; Li, H. Data Rate based Congestion Control in V2V communication for traffic safety applications. In Proceedings of the 2015 IEEE Symposium on Communications and Vehicular Technology in the Benelux (SCVT), Luxembourg, 24 November 2015; pp. 1–6. [Google Scholar]
- Math, C.B.; Li, H.; de Groot, S.H.; Niemegeers, I. A combined fair decentralized message-rate and data-rate congestion control for V2V communication. In Proceedings of the IEEE Vehicular Networking Conference (VNC), Turin, Italy, 27–29 November 2017; pp. 271–278. [Google Scholar]
- Math, C.B.; Li, H.; Abanto-Leon, L.F.; de Groot, S.H.; Niemegeers, I. Coexistence of Decentralized Congestion Control Algorithms for V2V Communication. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Math, C.B.; Li, H.; de Groot, S.H.; Niemegeers, I. Fair decentralized data-rate congestion control for V2V communications. In Proceedings of the 2017 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, 3–5 May 2017; pp. 1–7. [Google Scholar]
- Jayachandran, S.; Jaekel, A. Adaptive Data Rate Based Congestion Control in Vehicular Ad Hoc Networks (VANET). In Proceedings of the International Conference on Ad Hoc Networks (EAI AdHocNets), Guangzhou, China, 14–16 December 2022. [Google Scholar]
- Available online: https://www.eclipse.org/sumo/ (accessed on 1 September 2023).
- Available online: https://omnetpp.org/ (accessed on 1 September 2023).
Name | Value |
---|---|
Maximum beacon interval | 100 ms |
Minimum beacon interval | 20 ms |
Fixed transmission power | 20 mW |
BSM size | 256 B, 1024 B |
Minimum power level | −110 dBm |
Noise floor | −98 dBm |
Vehicle number | 80 |
Highway length | 1 km |
DRCC1 | DRCC2 | DRCC3 | DRCC4 | DRCC5 | |
---|---|---|---|---|---|
0.2 | 0.3 | 0.3 | 0.5 | 0.6 | |
0.4 | 0.5 | 0.7 | 0.7 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
St. Amour, B.; Jaekel, A. Data Rate Selection Strategies for Periodic Transmission of Safety Messages in VANET. Electronics 2023, 12, 3790. https://doi.org/10.3390/electronics12183790
St. Amour B, Jaekel A. Data Rate Selection Strategies for Periodic Transmission of Safety Messages in VANET. Electronics. 2023; 12(18):3790. https://doi.org/10.3390/electronics12183790
Chicago/Turabian StyleSt. Amour, Ben, and Arunita Jaekel. 2023. "Data Rate Selection Strategies for Periodic Transmission of Safety Messages in VANET" Electronics 12, no. 18: 3790. https://doi.org/10.3390/electronics12183790
APA StyleSt. Amour, B., & Jaekel, A. (2023). Data Rate Selection Strategies for Periodic Transmission of Safety Messages in VANET. Electronics, 12(18), 3790. https://doi.org/10.3390/electronics12183790