Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder
Abstract
:1. Introduction
2. Application of Autoencoders for Wireless Communications
2.1. Single-Carrier Autoencoders
2.2. OFDM-Based Autoencoders
3. Performance Evaluation
3.1. Simulation Framework
3.2. Performance of Single-Carrier Autoencoders
3.3. Performance of OFDM-Based Autoencoders
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Phuoc Nguyen, T.H.; Khuc, B.; Petrov, I.; Lavrukhin, T.; Gelgor, A. Improvement in Data Transmission Efficiency in Mobile 5G New Radio System using Filter Bank Multicarrier Signals. In Proceedings of the 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 20–21 October 2022; pp. 63–66. [Google Scholar] [CrossRef]
- Petrov, I.; Lavrukhin, T.; Khuc, B.; Gelgor, A.; Phuoc Nguyen, T.H. Possible Use of Simple TOFDM and SEFDM Signals in 5G NR. In Proceedings of the 2022 International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 20–21 October 2022; pp. 162–165. [Google Scholar] [CrossRef]
- Jayawickrama, B.A.; He, Y. Improved Layered Normalized Min-Sum Algorithm for 5G NR LDPC. IEEE Wirel. Commun. Lett. 2022, 11, 2015–2018. [Google Scholar] [CrossRef]
- Tian, K.; Wang, H. A Novel Base Graph Based Static Scheduling Scheme for Layered Decoding of 5G LDPC Codes. IEEE Commun. Lett. 2022, 26, 1450–1453. [Google Scholar] [CrossRef]
- Felix, A.; Cammerer, S.; Dörner, S.; Hoydis, J.; Ten Brink, S. OFDM-Autoencoder for End-to-End Learning of Communications Systems. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- O’shea, T.; Hoydis, J. An Introduction to Deep Learning for the Physical Layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Yang, X.; Xiao, X.; Wang, H.; Zhang, R. Deep Learning-Based Modulation Recognition for Low Signal-to-Noise Ratio Environments. Electronics 2022, 11, 4026. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Y.; Nie, M.; Zhu, T.; Liu, Z.; Liu, C. Exploring LoRa and Deep Learning-Based Wireless Activity Recognition. Electronics 2023, 12, 629. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; De Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secure and Energy Efficient Transmission for RSMA-Based Cognitive Satellite-Terrestrial Networks. IEEE Wirel. Commun. Lett. 2021, 10, 251–255. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; De Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Asif, K.M.; Trivedi, A. OFDM Ensemble Autoencoder Using CNN and SPSA for End-to-End Learning Communication Systems. In Proceedings of the 2020 IEEE 4th Conference on Information & Communication Technology (CICT), Chennai, India, 3–5 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rajapaksha, N.; Rajatheva, N.; Latva-aho, M. Low Complexity Autoencoder based End-to-End Learning of Coded Communications Systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Proakis. Digital Communications, 5th ed.; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Alsharif, M.H.; Hossain, M.S.; Jahid, A.; Khan, M.A.; Choi, B.J.; Mostafa, S.M. Milestones of Wireless Communication Networks and Technology Prospect of Next Generation (6G). Comput. Mater. Contin. 2022, 71, 4803–4818. [Google Scholar] [CrossRef]
- Mohsan, S.A.H.; Khan, M.A.; Noor, F.; Ullah, I.; Alsharif, M.H. Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones 2022, 6, 147. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Jahid, A.; Kelechi, A.H.; Kannadasan, R. Green IoT: A Review and Future Research Directions. Symmetry 2023, 15, 757. [Google Scholar] [CrossRef]
- Makarov, S.B.; Liu, M.; Ovsyannikova, A.S.; Zavjalov, S.V.; Lavrenyuk, I.I.; Xue, W.; Qi, J. Optimizing the Shape of Faster-Than-Nyquist (FTN) Signals with the Constraint on Energy Concentration in the Occupied Frequency Bandwidth. IEEE Access 2020, 8, 130082–130093. [Google Scholar] [CrossRef]
- Puzko, D.; Batov, Y.; Gelgor, A.; Dolgikh, D. QAM Constellations with Fractional Entropy to Gain in Margin Maximization for Frequency Selective Channels. IEEE Commun. Lett. 2023, 27, 1457–1461. [Google Scholar] [CrossRef]
- Phuoc Nguyen, T.H.; To, T.N.; Tran-Thi, D.; Le-Trung, Q. 5G Channel Estimation Based on Whale Optimization Algorithm. Wirel. Commun. Mob. Comput. 2023, 2023, 5800673. [Google Scholar] [CrossRef]
Autoencoder | LDPC Codes | Description | ||
---|---|---|---|---|
2 | 2 | - | - | Autoencoder (2, 2) compared with QPSK without LDPC coding (Figure 7). |
4 | 2 | - | - | Autoencoder (4, 2) compared with QAM16 without LDPC coding (Figure 7). |
Autoencoder | LDPC Codes | Description | ||
---|---|---|---|---|
4 | 3 | 43,200 | 64,800 | Autoencoder (4, 3) compared with QAM16 using LDPC code rate 2/3 (Figure 8a). |
4 | 4 | 32,400 | 64,800 | Autoencoder (4, 4) compared with QAM16 using LDPC code rate 1/2 (Figure 8a). |
5 | 4 | 25,920 | 64,800 | Autoencoder (5, 4) compared with QAM16 using LDPC code rate 2/5 (Figure 8a). |
6 | 4 | 21,600 | 64,800 | Autoencoder (6, 4) compared with QAM16 using LDPC code rate 1/3 (Figure 8a). |
8 | 4 | 16,200 | 64,800 | Autoencoder (8, 4) compared with QAM16 using LDPC code rate 1/4 (Figure 8a). |
Autoencoder | LDPC Codes | Description | ||
---|---|---|---|---|
3 | 6 | 43,200 | 64,800 | Autoencoder (3, 6) compared with QAM64 using LDPC code rate 2/3 (Figure 8b). |
4 | 6 | 32,400 | 64,800 | Autoencoder (4, 6) compared with QAM64 using LDPC code rate 1/2 (Figure 8b). |
5 | 6 | 25,920 | 64,800 | Autoencoder (5, 6) compared with QAM64 using LDPC code rate 2/5 (Figure 8b). |
6 | 6 | 21,600 | 64,800 | Autoencoder (6, 6) compared with QAM64 using LDPC code rate 1/3 (Figure 8b). |
8 | 6 | 16,200 | 64,800 | Autoencoder (8, 6) compared with QAM64 using LDPC code rate 1/4 (Figure 8b). |
Autoencoder | LDPC Codes | Description | ||
---|---|---|---|---|
3 | 8 | 43,200 | 64,800 | Autoencoder (3, 8) compared with QAM256 using LDPC code rate 2/3 (Figure 8c). |
4 | 8 | 32,400 | 64,800 | Autoencoder (4, 8) compared with QAM256 using LDPC code rate 1/2 (Figure 8c). |
5 | 8 | 25,920 | 64,800 | Autoencoder (5, 8) compared with QAM256 using LDPC code rate 2/5 (Figure 8c). |
6 | 8 | 21,600 | 64,800 | Autoencoder (6, 8) compared with QAM256 using LDPC code rate 1/3 (Figure 8c). |
8 | 8 | 16,200 | 64,800 | Autoencoder (8, 8) compared with QAM256 using LDPC code rate 1/4 (Figure 8c). |
Parameter | Value |
---|---|
Optimization algorithm | SGD combined with Adam |
Initial learning rate | 0.08 |
Maximum epochs | 10 |
Minibatch size | 100 M |
Learning rate drop factor | 0.1 |
LDPC code rate | 2/3, 1/2, 2/5, 1/3, 1/4 |
Number of frames | 200 |
Parameter | Value |
---|---|
Optimization algorithm | SGD combined with Adam |
Initial learning rate | 0.02 |
Maximum epochs | 10 |
Minibatch size | 100 M |
Learning rate drop factor | 0.1 |
LDPC code rate | 2/3, 1/2, 2/5 |
256 | |
Channel estimation method | Ideal/using pilots |
Pilot spacing | 2/8/16/64 |
Channel model | TDLA-30/10 |
Interpolation method | Spline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan HP, N.; Le Thanh, B.; To, T.-N.; Pham, H.-L.; Dinh, V.-H.; Nguyen, T.-T.; Khuc, B. Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder. Electronics 2023, 12, 3945. https://doi.org/10.3390/electronics12183945
Tan HP N, Le Thanh B, To T-N, Pham H-L, Dinh V-H, Nguyen T-T, Khuc B. Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder. Electronics. 2023; 12(18):3945. https://doi.org/10.3390/electronics12183945
Chicago/Turabian StyleTan HP, Nguyen, Bang Le Thanh, Thanh-Nha To, Hoang-Lai Pham, Viet-Hai Dinh, Tien-Thanh Nguyen, and Bang Khuc. 2023. "Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder" Electronics 12, no. 18: 3945. https://doi.org/10.3390/electronics12183945
APA StyleTan HP, N., Le Thanh, B., To, T. -N., Pham, H. -L., Dinh, V. -H., Nguyen, T. -T., & Khuc, B. (2023). Performance Evaluation of Single-Carrier and Orthogonal Frequency Divison Multiplexing-Based Autoencoders in Comparison with Low-Density Parity-Check Encoder. Electronics, 12(18), 3945. https://doi.org/10.3390/electronics12183945