Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems
Abstract
:1. Introduction
2. Related Works
3. The Proposed Model
3.1. Design of Feature Selection Using GJO Algorithm
3.2. Cyberattack Detection Using AE-DBN Model
3.3. Hyperparameter Tuning Using POA
3.3.1. Exploration Stage
3.3.2. Exploitation Step
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Lin, J.; Han, H. FSL: Federated sequential learning-based cyberattack detection for Industrial Internet of Things. Ind. Artif. Intell. 2023, 1, 4. [Google Scholar] [CrossRef]
- Khan, F.; Jan, M.A.; Alturki, R.; Alshehri, M.D.; Shah, S.T.; ur Rehman, A. A Secure Ensemble Learning-Based Fog-Cloud Approach for Cyberattack Detection in IoMT. IEEE Trans. Ind. Inform. 2023, 19, 10125–10132. [Google Scholar] [CrossRef]
- Alkahtani, H.; Aldhyani, T.H. Intrusion detection system to advance Internet of Things infrastructure-based deep learning algorithms. Complexity 2021, 2021, 5579851. [Google Scholar] [CrossRef]
- Alatawi, T.; Aljuhani, A. Anomaly Detection Framework in Fog-to-Things Communication for Industrial Internet of Things. Comput. Mater. Contin. 2022, 73, 1067–1086. [Google Scholar] [CrossRef]
- Rouzbahani, H.M.; Bahrami, A.H.; Karimipour, H. A snapshot ensemble deep neural network model for attack detection in the industrial internet of things. In AI-Enabled Threat Detection and Security Analysis for Industrial IoT; Springer: Cham, Switzerland, 2021; pp. 181–194. [Google Scholar]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Zhou, M.G.; Cao, X.Y.; Lu, Y.S.; Wang, Y.; Bao, Y.; Jia, Z.Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Experimental quantum advantage with quantum coupon collector. Research 2022, 2022, 798679. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Tomar, K.; Bisht, K.; Joshi, K.; Katarya, R. Cyber Attack Detection in IoT using Deep Learning Techniques. In Proceedings of the 2023 6th International Conference on Information Systems and Computer Networks (ISCON), Mathura, India, 3–4 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Kumar, R.; Tripathi, R. DBTP2SF: A deep blockchain-based trustworthy privacy-preserving secured framework in industrial Internet of things systems. Trans. Emerg. Telecommun. Technol. 2021, 32, e4222. [Google Scholar] [CrossRef]
- Al-Hawawreh, M.; Hossain, M.S. A privacy-aware framework for detecting cyber attacks on the internet of Medical Things systems using data fusion and quantum deep learning. Inf. Fusion 2023, 14, 101889. [Google Scholar] [CrossRef]
- Alalayah, K.M.; Alrayes, F.S.; Alzahrani, J.S.; Alaidarous, K.M.; Alwayle, I.M.; Mohsen, H.; Ahmed, I.A.; Al Duhayyim, M. Optimal Deep Learning Based Intruder Identification in Industrial Internet of Things Environment. Comput. Syst. Sci. Eng. 2023, 46, 3121–3139. [Google Scholar] [CrossRef]
- Vaiyapuri, T.; Sbai, Z.; Alaskar, H.; Alaseem, N.A. Deep learning approaches for intrusion detection in IIoT networks–opportunities and future directions. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 86–92. [Google Scholar] [CrossRef]
- Golchha, R.; Joshi, A.; Gupta, G.P. Voting-based Ensemble Learning Approach for Cyber Attacks Detection in Industrial Internet of Things. Procedia Comput. Sci. 2023, 218, 1752–1759. [Google Scholar] [CrossRef]
- Al-Abassi, A.; Karimipour, H.; Dehghantanha, A.; Parizi, R.M. An ensemble deep learning-based cyber-attack detection in industrial control system. IEEE Access 2020, 8, 83965–83973. [Google Scholar] [CrossRef]
- Hasan, T.; Malik, J.; Bibi, I.; Khan, W.U.; Al-Wesabi, F.N.; Dev, K.; Huang, G. Securing industrial Internet of things against botnet attacks using hybrid deep learning approach. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2952–2963. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Kazemi, M.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H. An ensemble deep learning model for cyber threat hunting in the industrial internet of things. Digit. Commun. Netw. 2023, 9, 101–110. [Google Scholar] [CrossRef]
- Elsayed, R.; Hamada, R.; Hammoudeh, M.; Abdalla, M.; Elsaid, S.A. A Hierarchical Deep Learning-Based Intrusion Detection Architecture for Clustered Internet of Things. J. Sens. Actuator Netw. 2022, 12, 3. [Google Scholar] [CrossRef]
- Huma, Z.E.; Latif, S.; Ahmad, J.; Idrees, Z.; Ibrar, A.; Zou, Z.; Alqahtani, F.; Baothman, F. A hybrid deep random neural network for cyberattack detection in the industrial internet of things. IEEE Access 2021, 9, 55595–55605. [Google Scholar] [CrossRef]
- Gómez, Á.L.P.; Maimó, L.F.; Celdrán, A.H.; Clemente, F.J.G. SUSAN: A Deep Learning based anomaly detection framework for sustainable industry. Sustain. Comput. Inform. Syst. 2023, 37, 100842. [Google Scholar] [CrossRef]
- Nayak, S.; Ahmed, N.; Misra, S. Deep learning-based reliable routing attack detection mechanism for industrial Internet of Things. Ad Hoc Netw. 2021, 123, 102661. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Mei, F.; Sun, G.; Jin, J. IBGJO: Improved Binary Golden Jackal Optimization with Chaotic Tent Map and Cosine Similarity for Feature Selection. Entropy 2023, 25, 1128. [Google Scholar] [CrossRef] [PubMed]
- Al-Khazraji, H.; Nasser, A.R.; Hasan, A.M.; Al Mhdawi, A.K.; Al-Raweshidy, H.; Humaidi, A.J. Aircraft engines remain useful for life prediction based on a hybrid model of autoencoder and deep belief network. IEEE Access 2022, 10, 82156–82163. [Google Scholar] [CrossRef]
- Zhang, C.; Pei, Y.H.; Wang, X.X.; Hou, H.Y.; Fu, L.H. Symmetric cross-entropy multi-threshold colour image segmentation based on the improved pelican optimization algorithm. PLoS ONE 2023, 18, e0287573. [Google Scholar]
- Available online: https://www.kaggle.com/mrwellsdavid/unsw-nb15 (accessed on 14 June 2023).
- Available online: https://www.kaggle.com/paresh2047/uci-semcom (accessed on 14 June 2023).
- Kasongo, S.M.; Sun, Y. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset. J. Big Data 2020, 7, 105. [Google Scholar] [CrossRef]
- Kotecha, K.; Verma, R.; Rao, P.V.; Prasad, P.; Mishra, V.K.; Badal, T.; Jain, D.; Garg, D.; Sharma, S. Enhanced Network Intrusion Detection System. Sensors 2021, 21, 7835. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, Y.; Liang, W.; Ma, J.; Jin, Q. Variational LSTM enhanced anomaly detection for industrial big data. IEEE Trans. Ind. Inform. 2020, 17, 3469–3477. [Google Scholar] [CrossRef]
- Moldovan, D.; Anghel, I.; Cioara, T.; Salomie, I. Particle Swarm Optimization Based Deep Learning Ensemble for Manufacturing Processes. In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 563–570. [Google Scholar]
UNSWNB15 Dataset | |||||
---|---|---|---|---|---|
Class | (%) | (%) | (%) | (%) | (%) |
TR set (70%) | |||||
Normal | 98.70 | 89.57 | 98.42 | 98.73 | 93.79 |
Generic | 99.56 | 98.58 | 97.07 | 99.84 | 97.82 |
Exploits | 99.43 | 96.11 | 98.09 | 99.57 | 97.09 |
Fuzzers | 99.76 | 99.29 | 98.31 | 99.92 | 98.80 |
DoS | 99.46 | 96.92 | 97.97 | 99.63 | 97.44 |
Reconnaissance | 99.61 | 99.22 | 96.67 | 99.92 | 97.93 |
Analysis | 99.40 | 98.66 | 95.25 | 99.86 | 96.93 |
Backdoor | 99.44 | 99.12 | 95.33 | 99.90 | 97.19 |
Shellcode | 99.54 | 97.00 | 98.41 | 99.67 | 97.70 |
Worms | 99.56 | 98.84 | 96.73 | 99.87 | 97.77 |
Average | 99.45 | 97.33 | 97.23 | 99.69 | 97.25 |
TS set (30%) | |||||
Normal | 98.73 | 89.76 | 98.68 | 98.74 | 94.01 |
Generic | 99.47 | 98.20 | 96.13 | 99.82 | 97.15 |
Exploits | 99.30 | 94.89 | 98.75 | 99.37 | 96.78 |
Fuzzers | 99.67 | 98.61 | 97.92 | 99.85 | 98.26 |
DoS | 99.70 | 98.47 | 98.09 | 99.85 | 98.28 |
Reconnaissance | 99.77 | 99.70 | 98.23 | 99.96 | 98.96 |
Analysis | 99.17 | 97.95 | 93.77 | 99.78 | 95.81 |
Backdoor | 99.40 | 97.58 | 96.25 | 99.74 | 96.91 |
Shellcode | 99.60 | 98.38 | 97.74 | 99.81 | 98.06 |
Worms | 99.53 | 99.30 | 95.95 | 99.93 | 97.59 |
Average | 99.43 | 97.28 | 97.15 | 99.68 | 97.18 |
UCI SECOM Dataset | |||||
---|---|---|---|---|---|
Class | (%) | (%) | (%) | (%) | (%) |
TR set (70%) | |||||
Class 1 | 97.66 | 99.36 | 97.66 | 99.37 | 98.51 |
Class 2 | 99.37 | 97.69 | 99.37 | 97.66 | 98.52 |
Average | 98.52 | 98.53 | 98.52 | 98.52 | 98.51 |
TS set (30%) | |||||
Class 1 | 97.99 | 98.78 | 97.99 | 98.81 | 98.38 |
Class 2 | 98.81 | 98.03 | 98.81 | 97.99 | 98.42 |
Average | 98.40 | 98.41 | 98.40 | 98.40 | 98.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maghrabi, L.A.; Alzahrani, I.R.; Alsalman, D.; AlKubaisy, Z.M.; Hamed, D.; Ragab, M. Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems. Electronics 2023, 12, 4091. https://doi.org/10.3390/electronics12194091
Maghrabi LA, Alzahrani IR, Alsalman D, AlKubaisy ZM, Hamed D, Ragab M. Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems. Electronics. 2023; 12(19):4091. https://doi.org/10.3390/electronics12194091
Chicago/Turabian StyleMaghrabi, Louai A., Ibrahim R. Alzahrani, Dheyaaldin Alsalman, Zenah Mahmoud AlKubaisy, Diaa Hamed, and Mahmoud Ragab. 2023. "Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems" Electronics 12, no. 19: 4091. https://doi.org/10.3390/electronics12194091
APA StyleMaghrabi, L. A., Alzahrani, I. R., Alsalman, D., AlKubaisy, Z. M., Hamed, D., & Ragab, M. (2023). Golden Jackal Optimization with a Deep Learning-Based Cybersecurity Solution in Industrial Internet of Things Systems. Electronics, 12(19), 4091. https://doi.org/10.3390/electronics12194091