Design of a Compact Microstrip Decoupled Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antenna Configuration
2.2. Miniaturization Antenna
2.3. Decoupling Feed Network
3. Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, X.; Roy, S.; Xing, G. MIMO-SAR: A Hierarchical High-Resolution Imaging Algorithm for mmWave FMCW Radar in Autonomous Driving. IEEE Trans. Veh. Technol. 2021, 70, 7322–7334. [Google Scholar] [CrossRef]
- Mei, P.; Zhang, Y.-M.; Zhang, S. Decoupling of a Wideband Dual-Polarized Large-Scale Antenna Array with Dielectric Stubs. IEEE Trans. Veh. Technol. 2021, 70, 7363–7374. [Google Scholar] [CrossRef]
- Kerketta, S.R.; Ghosh, D. Gain Enhancement of Extremely Wide Band Stubbed Monopole Antenna Backed by Dielectric. In Proceedings of the 2019 IEEE 16th India Council International Conference (INDICON), Rajkot, India, 13–15 December 2019; pp. 1–3. [Google Scholar]
- Zhang, S.; Pedersen, G.F. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 166–169. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, L.; Zhang, L.; Wang, Y. A 150GHz amplifier based on coupled transmission line neutralization and inter stage impedance matching with 20dB gain in 65nm CMOS. In Proceedings of the 2017 International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017; pp. 1–2. [Google Scholar]
- Tang, X.; Mouthaan, K.; Coetzee, J.C. Tunable Decoupling and Matching Network for Diversity Enhancement of Closely Spaced Antennas. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 268–271. [Google Scholar] [CrossRef]
- Ping, T.C.; Coetzee, J.C. Microstrip decoupling networks for low-order multiport arrays with reduced element spacing. Microw. Opt. Technol. Lett. 2010, 46, 592–597. [Google Scholar]
- Zhang, Y.-M.; Ye, Q.-C.; Pedersen, G.F.; Zhang, S. A Simple Decoupling Network with Filtering Response for Patch Antenna Arrays. IEEE Trans. Antennas Propag. 2021, 69, 7427–7439. [Google Scholar] [CrossRef]
- Li, Y.; Chu, Q.-X. Self-Decoupled Dual-Band Shared-Aperture Base Station Antenna Array. IEEE Trans. Antennas Propag. 2022, 70, 6024–6029. [Google Scholar] [CrossRef]
- Boroujeni, S.R.; Safavi-Naeini, S. A Broadband H-Plane Patch Antenna Decoupling Technique. In Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 31 October 2019; pp. 1763–1764. [Google Scholar]
- Chen, J.; Han, L.; Yang, R.; Zhang, W. Design of a Slot Antenna Array Using Array-antenna Decoupling Surface. In Proceedings of the 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, 18–21 July 2019; pp. 1–3. [Google Scholar]
- Lin, L.-X.; Tu, Z.-H.; Zhu, H. Isolation Enhancement in Millimeter-wave MIMO Array Base on Array-Antenna Decoupling Surface. In Proceedings of the 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Guangzhou, China, 27–29 November 2022; pp. 1–3. [Google Scholar]
- Li, J.; Zhang, A.; Joines, W.T.; Liu, Q.H. A miniaturized circularly polarized microstrip antenna with bandwidth enhancement. In Proceedings of the 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, PR, USA, 26 June–1 July 2016; pp. 41–42. [Google Scholar]
- Asahina, I.; Saito, S.; Kimura, Y. Resonant Frequency Control of a Varactor-Loaded Single-Layer Triple-Band Miniaturized Microstrip Antenna Fed by an L-probe with Straight Shorted Elements. In Proceedings of the 2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Narashino, Japan, 29–31 August 2022; pp. 142–143. [Google Scholar]
- Wu, J.; Ren, X.; Wang, Z.; Yin, Y. Broadband Circularly Polarized Antenna with L-shaped Strip Feeding and Shorting-Pin Loading. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1733–1736. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, M.; Huang, H.; Wang, Y.; Zhu, S.; Zhang, C.; Yi, J.; Kishk, A.A. Simultaneous Decoupling and Decorrelation Scheme of MIMO Arrays. IEEE Trans. Veh. Technol. 2022, 71, 2164–2169. [Google Scholar] [CrossRef]
- Peng, Z.; Zhou, J.; Rao, Y.; Deng, Z.; Luo, X. Compact Bandpass Filter with Wide Stopband and Low Radiation Using Fully-Packaged Substrate Integrated Defected Ground Structure. In Proceedings of the 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 25–27 August 2021; pp. 1–3. [Google Scholar]
- Nasimuddin; Qing, X.; Chen, Z.N. A Compact Circularly Polarized Slotted Patch Antenna for GNSS Applications. IEEE Trans. Antennas Propag. 2014, 62, 6506–6509. [Google Scholar] [CrossRef]
- Batel, L.; Pintos, J.-F.; Delaveaud, C. Design of a monopolar wire-plate antenna loaded with magneto-dielectric material. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–5. [Google Scholar]
- Yang, M.; Chen, Z.N.; Lau, P.Y.; Qing, X.; Yin, X. Miniaturized Patch Antenna with Grounded Strips. IEEE Trans. Antennas Propag. 2015, 63, 843–848. [Google Scholar] [CrossRef]
- Kulkarni, J.; Sim, C.-Y.-D.; Garner, B.; Li, Y. A Dual CP Quad-Port MIMO Antenna with Reduced Mutual Coupling for X-band Application. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2085–2089. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhao, L.; Huang, G.-L.; Shi, X.; Huang, Q. A Miniaturized Microstrip Antenna Array at 5G Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1671–1675. [Google Scholar] [CrossRef]
- Tran, H.H.; Hussain, N.; Le, T.T. Low-profile wideband circularly polarized MIMO antenna with polarization diversity for WLAN applications. AEU-Int. J. Electron. Commun. 2019, 108, 172–180. [Google Scholar] [CrossRef]
- Sim, C.-Y.-D.; Dhasarathan, V.; Tran, T.K.; Kulkarni, J.; Garner, B.A.; Li, Y. Mutual Coupling Reduction in Dual-Band MIMO Antenna Using Parasitic Dollar-Shaped Structure for Modern Wireless Communication. IEEE Access 2023, 11, 5617–5628. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Kshetrimayum, R.S.; Sonkar, R.K. High inter-port isolation dual circularly polarized slot antenna with split-ring resonator based novel metasurface. AEU Arch. Elektron. Ubertrag. Electron. Commun. 2019, 107, 146–156. [Google Scholar] [CrossRef]
- Malviya, L.; Panigrahi, R.K.; Kartikeyan, M. Circularly polarized 2 × 2 MIMO antenna for WLAN applications. Prog. Electromagn. Res. C 2016, 66, 97–107. [Google Scholar] [CrossRef]
- Zhang, E.; Michel, A.; Pino, M.R.; Nepa, P.; Qiu, J. A Dual Circularly Polarized Patch Antenna with High Isolation for MIMO WLAN Applications. IEEE Access 2020, 8, 117833–117840. [Google Scholar] [CrossRef]
Para | Ws | d | W | v | v1 | R | k1 | k2 | u |
---|---|---|---|---|---|---|---|---|---|
Value | 78 | 32 | 23.4 | 17.1 | 16.5 | 3.8 | 6.1 | 8.4 | 0.3 |
Para | P | L1 | L2 | W1 | W1s | R | R1 | Wm | H |
Value | 11.2 | 23.15 | 11 | 2 | 1.5 | 4.3 | 11.1 | 0.3 | 1.48 |
Main Line | Equivalent Unit | ||||||
---|---|---|---|---|---|---|---|
22.5 | 130.6 | 0.24 | 5.5 | 20 | 42 | 2.58 | 4.55 |
Ref. | Antenna Unit Size | Array Type | Array Spacing | 10 dB Bandwidth (GHz) | Gain (dBi) | Isolation (dB) |
---|---|---|---|---|---|---|
[21] | 0.98 λ × 0.7 λ | 2 × 2 | 0.48 λ | 7.9–9.59 | 8.3 | >18 |
[22] | 0.22 λ × 0.18 λ × 0.76 λ | 5 × 6 | 0.22 λ | 26.5–29.5 | 7 | >23 |
[23] | 1.03 λ × 0.59 λ × 0.05 λ | 1 × 2 | 0.44 λ | 5.12–6.32 | 5.8 | ≥20 |
[24] | 0.33 λ × 0.5 λ | 1 × 2 | 0.42 λ | 2.39–2.57, 3.82–6.95 | 2.65 | >15 |
[25] | 1.58 λ × 0.75 λ × 0.024 λ | 2 × 4 | 0.12 λ | 4–5.4 | 3.6 | >27 |
[26] | 0.19 λ × 0.21 λ | 1 × 4 | 0.48 λ | 5.49–6.024 | 5.34 | >33 |
[27] | 0.316 λ × 0.316 λ | 4 × 4 | 0.5 λ | 2.4–2.485 | 7 | >25 |
Proposed | 0.19 λ × 0.19 λ | 1 × 2 | 0.27 λ | 2.4453–2.4533 | 5.54 | >36.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, Z.; Yang, D.; Xue, K. Design of a Compact Microstrip Decoupled Array. Electronics 2023, 12, 4163. https://doi.org/10.3390/electronics12194163
Weng Z, Yang D, Xue K. Design of a Compact Microstrip Decoupled Array. Electronics. 2023; 12(19):4163. https://doi.org/10.3390/electronics12194163
Chicago/Turabian StyleWeng, Zibin, Dan Yang, and Kaibin Xue. 2023. "Design of a Compact Microstrip Decoupled Array" Electronics 12, no. 19: 4163. https://doi.org/10.3390/electronics12194163
APA StyleWeng, Z., Yang, D., & Xue, K. (2023). Design of a Compact Microstrip Decoupled Array. Electronics, 12(19), 4163. https://doi.org/10.3390/electronics12194163