A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. Testing
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, L.M.; Feng, H.T. The Deep Integration of China’s Regional Ice-Snow Industry and Ecocultural Tourism under the Background of Beijing Winter Olympic Games: Taking Hunan as an Example. J. Environ. Public Health 2022, 2022, 6736709. [Google Scholar]
- Stuart, A.; Cochrane-Snyman, K.C. Strength Training and Development in Competitive Speed Skating. Strength Cond. J. 2022, 44, 1–10. [Google Scholar] [CrossRef]
- Asfandiyarov, D.B.; Titlov, A.Y. Training of Young Speed Skaters and the Analysis of Multi-Year Performance. Hum. Sport Med. 2021, 21, 93–100. [Google Scholar]
- Moon, Y.; Song, J.; Kwon, K.; Kwon, O.; Kim, M.; Yoon, S.H.; Byun, Y.; Sa, A.N. Development of a Functional Speed Skating Uniform through Aerodynamic Analysis on Knit Textiles and Uniforms. J. Eng. Fiber Fabr. 2016, 11, 64–75. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Xu, Q.S.; Gan, Y.Y.; Sun, F.X.; Sun, Z.A. Lightweight Sensitive Triboelectric Nanogenerator Sensor for Monitoring Loop Drive Technology in Table Tennis Training. Electronics 2022, 11, 3212. [Google Scholar] [CrossRef]
- Wu, W.L.; Hsu, H.T.; Chu, I.H.; Tsai, F.H.; Liang, J.M. Selected plantar pressure characteristics associated with the skating performance of national in-line speed skaters. Sport Biomech. 2017, 16, 210–219. [Google Scholar] [CrossRef]
- Lu, Z.; Jia, C.J.; Yang, X.; Zhu, Y.S.; Sun, F.X.; Zhao, T.M.; Zhang, S.W.; Mao, Y.P. A Flexible TENG Based on Micro-Structure Film for Speed Skating Techniques Monitoring and Biomechanical Energy Harvesting. Nanomaterials 2022, 12, 1576. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.S.; Jia, C.J.; Zhao, T.M.; Bian, M.Y.; Jia, C.F.; Zhang, Y.Q.; Mao, Y.P. A Self-Powered Portable Flexible Sensor of Monitoring Speed Skating Techniques. Biosensensors 2021, 11, 108. [Google Scholar] [CrossRef]
- Wang, A.R.; Yang, L.; Wen, W.M.; Zhang, S.; Hao, D.M.; Khalid, S.G.; Zheng, D.C. Quantification of radial arterial pulse characteristics change during exercise and recovery. J. Physiol. Sci. 2018, 68, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Roslan, M.F.; Ahmad, A. Internet of Things (IoT)-based Solution for Real-time Monitoring System in High Jump Sport. Int. J. Integr. Eng. 2019, 11, 197–205. [Google Scholar]
- Knobbe, A.; Orie, J.; Hofman, N.; van der Burgh, B.; Cachucho, R. Sports analytics for professional speed skating. Data Min. Knowl. Disc. 2017, 31, 1872–1902. [Google Scholar] [CrossRef] [Green Version]
- Gai, L.Z.; Wang, F.T.; Zhou, F.Z. A Stretchable Triboelectric Nanogenerator Integrated Ion Coagulation Electrode for Cheerleading Monitoring. J. Electron. Mater. 2022, 51, 7182–7189. [Google Scholar] [CrossRef]
- Sun, F.X.; Zhu, Y.S.; Jia, C.J.; Ouyang, B.W.; Zhao, T.M.; Li, C.X.; Ba, N.; Li, X.; Chen, S.; Che, T.T.; et al. A Flexible Lightweight Triboelectric Nanogenerator for Protector and Scoring System in Taekwondo Competition Monitoring. Electronics 2022, 11, 1306. [Google Scholar] [CrossRef]
- Ma, X.F.; Liu, X.; Li, X.X.; Ma, Y.F. Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports. Electronics 2021, 10, 2322. [Google Scholar] [CrossRef]
- Bukhari, M.U.; Khan, A.; Maqbool, K.Q.; Arshad, A.; Riaz, K.; Bermak, A. Waste to energy: Facile, low-cost and environment-friendly triboelectric nanogenerators using recycled plastic and electronic wastes for self-powered portable electronics. Energy Rep. 2022, 8, 1687–1695. [Google Scholar] [CrossRef]
- Sun, P.; Cai, N.X.; Zhong, X.D.; Zhao, X.J.; Zhang, L.; Jiang, S.H. Facile monitoring for human motion on fireground by using MiEs-TENG sensor. Nano Energy 2021, 89, 106492. [Google Scholar] [CrossRef]
- Jiang, M.; Lu, Y.; Zhu, Z.Y.; Jia, W.Z. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines 2021, 12, 698. [Google Scholar] [CrossRef]
- Xu, G.P.; Zheng, Y.B.; Feng, Y.G.; Ma, S.C.; Luo, N.; Feng, M.; Chen, S.G.; Wang, D. A triboelectric/electromagnetic hybrid generator for efficient wind energy collection and power supply for electronic devices. Sci. China Technol. Sci. 2021, 64, 2003–2011. [Google Scholar] [CrossRef]
- Sun, W.J.; Li, B.; Zhang, F.; Fang, C.L.; Lu, Y.J.; Gao, X.; Cao, C.J.; Chen, G.M.; Zhang, C.; Wang, Z.L. TENG-Bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012. [Google Scholar] [CrossRef]
- Zheng, Q.; Zou, Y.; Zhang, Y.L.; Liu, Z.; Shi, B.J.; Wang, X.X.; Jin, Y.M.; Ouyang, H.; Li, Z.; Wang, Z.L. Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci. Adv. 2016, 2, e1501478. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.J.L.; Jalabert, T.; Pusty, M.; Defoor, V.; Mescot, X.; Montanino, M.; Sico, G.; Loffredo, F.; Villani, F.; Nenna, G.; et al. Size and Semiconducting Effects on the Piezoelectric Performances of ZnO Nanowires Grown onto Gravure-Printed Seed Layers on Flexible Substrates. Nanoenergy Adv. 2022, 2, 197–209. [Google Scholar] [CrossRef]
- Garcia, A.J.L.; Sico, G.; Montanino, M.; Defoor, V.; Pusty, M.; Mescot, X.; Loffredo, F.; Villani, F.; Nenna, G.; Ardila, G. Low-Temperature Growth of ZnO Nanowires from Gravure-Printed ZnO Nanoparticle Seed Layers for Flexible Piezoelectric Devices. Nanomaterials 2021, 11, 1430. [Google Scholar] [CrossRef]
- Luo, J.J.; Gao, W.C.; Wang, Z.L. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 33, 2004178. [Google Scholar] [CrossRef]
- Wu, Y.S.; Liu, Q.; Cao, J.; Li, K.; Cheng, G.G.; Zhang, Z.Q.; Ding, J.N.; Jiang, S.Y. Design and output performance of vibration energy harvesting triboelectric nanogenerator. Acta Phys. Sin. 2019, 68, 190201. [Google Scholar] [CrossRef]
- Liu, G.L.; Chen, J.; Guo, H.Y.; Lai, M.H.; Pu, X.J.; Wang, X.; Hu, C.G. Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Res. 2018, 11, 633–641. [Google Scholar] [CrossRef]
- Yang, P.; Wang, P.F.; Diao, D.F. Graphene Nanosheets Enhanced Triboelectric Output Performances of PTFE Films. Acs. Appl. Electron. Mater. 2022, 4, 2839–2850. [Google Scholar] [CrossRef]
- Yang, W.Q.; Chen, J.; Zhu, G.; Wen, X.N.; Bai, P.; Su, Y.J.; Lin, Y.; Wang, Z.L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Sun, Y.S.; Zhang, J.J.; Li, C.Y.; Yang, J.; Li, H.; Jiang, T.; Chen, B.D. Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. Electronics 2022, 11, 1928. [Google Scholar] [CrossRef]
- Liu, C.R.; Li, J.Q.; Che, L.F.; Chen, S.Q.; Wang, Z.K.; Zhou, X.F. Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process. Nano Energy 2017, 41, 359–366. [Google Scholar] [CrossRef]
- Wu, Z.P.; Chen, J.; Boukhvalov, D.W.; Luo, Z.Y.; Zhu, L.J.; Shi, Y.J. A new triboelectric nanogenerator with excellent electric breakdown self-healing performance. Nano Energy 2021, 85, 105990. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, D.Z.; Wang, D.Y.; Xu, Z.Y.; Yang, Y.; Zhang, B. Flexible single-electrode triboelectric nanogenerator with MWCNT/PDMS composite film for environmental energy harvesting and human motion monitoring. Rare Met. 2022, 41, 3117–3128. [Google Scholar] [CrossRef]
- Chu, W.C.C.; Shih, C.; Chou, W.Y.; Ahamed, S.I.; Hsiung, P.A. Artificial Intelligence of Things in Sports Science: Weight Training as an Example. Computers 2019, 52, 52–61. [Google Scholar] [CrossRef]
- Li, W.J.; Lu, L.Q.; Kottapalli, A.G.P.; Pei, Y.T. Bioinspired sweat-resistant wearable triboelectric nanogenerator for movement monitoring during exercise. Nano Energy 2022, 95, 107018. [Google Scholar] [CrossRef]
- Xi, Y.; Guo, H.Y.; Zi, Y.L.; Li, X.G.; Wang, J.; Deng, J.N.; Li, S.M.; Hu, C.G.; Cao, X.; Wang, Z.L. Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor. Adv. Energy Mater. 2017, 7, 1602397. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, W.Y. A wave structure triboelectric nanogenerator for race walking motion sensing. Mater. Technol. 2022, 37, 2637–2643. [Google Scholar] [CrossRef]
- Kwon, D.H.; Kwon, J.H.; Jeong, J.; Lee, Y.; Biswas, S.; Lee, D.W.; Lee, S.; Bae, J.H.; Kim, H. Textile Triboelectric Nanogenerators with Diverse 3D-Spacer Fabrics for Improved Output Voltage. Electronics 2021, 10, 937. [Google Scholar] [CrossRef]
- Zhu, Y.S.; Sun, F.X.; Jia, C.J.; Huang, C.R.; Wang, K.; Li, Y.; Chou, L.P.; Mao, Y.P. A 3D Printing Triboelectric Sensor for Gait Analysis and Virtual Control Based on Human-Computer Interaction and the Internet of Things. Sustainability 2022, 14, 10875. [Google Scholar] [CrossRef]
- Lin, Z.M.; Wu, Z.Y.; Zhang, B.B.; Wang, Y.C.; Guo, H.Y.; Liu, G.L.; Chen, C.Y.; Chen, Y.L.; Yang, J.; Wang, Z.L. A Triboelectric Nanogenerator-Based Smart Insole for Multifunctional Gait Monitoring. Adv. Mater. Technol. 2019, 4, 1800360. [Google Scholar] [CrossRef]
- Yang, P.; Shi, Y.X.; Li, S.Y.; Tao, X.L.; Liu, Z.Q.; Wang, X.L.; Wang, Z.L.; Chen, X.Y. Monitoring the Degree of Comfort of Shoes In-Motion Using Triboelectric Pressure Sensors with an Ultrawide Detection Range. Acs. Nano 2022, 16, 4654–4665. [Google Scholar] [CrossRef]
- Varghese, H.; Hakkeem, H.M.A.; Farman, M.; Thouti, E.; Pillai, S.; Chandran, A. Self-powered flexible triboelectric touch sensor based on micro-pyramidal PDMS films and cellulose acetate nanofibers. Results Eng. 2022, 16, 100550. [Google Scholar] [CrossRef]
- Wei, X.L.; Wang, B.C.; Wu, Z.Y.; Wang, Z.L. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification. Adv. Mater. 2022, 34, 2203073. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.S.; Varghese, S.H.; Swaminathan, S.; Singh, K.K.; Mittal, V. Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.F.; Jin, X.; Wang, W.Y.; Niu, J.R.; Zhu, Z.T.; Lin, T. Efficient Triboelectric Nanogenerator (TENG) Output Management for Improving Charge Density and Reducing Charge Loss. Acs. Appl. Electron. Mater. 2021, 3, 532–549. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Tao, X.J.; Wang, Z.Q.; An, M.; Qi, K.; Ou, K.K.; He, J.X.; Wang, R.W.; Chen, X.G.; Dai, Z. Electret-Doped Polarized Nanofiber Triboelectric Nanogenerator with Enhanced Electrical Output Performance Based on a Micro-Waveform Structure. Acs. Appl. Electron. Mater. 2022, 4, 2473–2480. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.P. A textile-based triboelectric nanogenerator for long jump monitoring. Mater. Technol. 2022, 37, 2360–2367. [Google Scholar] [CrossRef]
- Zhou, Y.M.; Shen, H. Wireless Sensor Network Technology-Based Design and Realization of Intelligent Tennis Sports System. Wirel. Commun. Mob. Com. 2022, 2022, 3260000. [Google Scholar] [CrossRef]
- Gottschall, J.S.; Palmer, B.M. The acute effects of prior cycling cadence on running performance and kinematics. Med. Sci. Sport Exerc. 2002, 34, 1518–1522. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Wen, Y.; Yang, X.; Li, D.; Liu, B.; Zhang, Y.; Zhu, J.; Zhu, Y.; Zhang, S.; Mao, Y. A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator. Electronics 2023, 12, 320. https://doi.org/10.3390/electronics12020320
Lu Z, Wen Y, Yang X, Li D, Liu B, Zhang Y, Zhu J, Zhu Y, Zhang S, Mao Y. A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator. Electronics. 2023; 12(2):320. https://doi.org/10.3390/electronics12020320
Chicago/Turabian StyleLu, Zhuo, Yuzhang Wen, Xu Yang, Dan Li, Bocong Liu, Yaotian Zhang, Jiabin Zhu, Yongsheng Zhu, Shouwei Zhang, and Yupeng Mao. 2023. "A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator" Electronics 12, no. 2: 320. https://doi.org/10.3390/electronics12020320
APA StyleLu, Z., Wen, Y., Yang, X., Li, D., Liu, B., Zhang, Y., Zhu, J., Zhu, Y., Zhang, S., & Mao, Y. (2023). A Wireless Intelligent Motion Correction System for Skating Monitoring Based on a Triboelectric Nanogenerator. Electronics, 12(2), 320. https://doi.org/10.3390/electronics12020320