Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds
Abstract
:1. Introduction
2. Description of the Theories
2.1. Feature Extraction Module Based on Attention Mechanism
2.2. Feature Fusion Network
2.3. Detection of Rotating Targets
3. Materials and Methods
3.1. Dataset
3.1.1. Data Acquisition
3.1.2. Data Pre-Processing
3.2. The Proposed Improved YOLO Network Model
3.2.1. Backbone Enhanced Feature Extraction Network
3.2.2. Feature Fusion Enhancement Network
- Unbounded fusion: This method, although simple, may be unstable during training because the weights are unconstrained. The formula is shown in Equation (2).
- Softmax-based fusion: The weight range is limited to [0, 1] by this method, and the training effect is stable but slow. The formula is shown in Equation (3).
- Fast normalized fusion: Not only is the weight range limited to [0, 1] by this method, but the training is faster and more efficient. The formula is shown in Equation (4).
3.2.3. Character Rotation Detection
4. Experiments and Discussion
4.1. Experimental Setup
4.2. Evaluation Metrics
4.3. Experimental Results
4.3.1. Comparison of Performance
4.3.2. Detection on Factory Test Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujisawa, H. Forty years of research in character and document recognition—An industrial perspective. Pattern Recognit. 2008, 41, 2435–2446. [Google Scholar] [CrossRef]
- Wu, X.W.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef]
- Olszewska, J.I. Active contour based optical character recognition for automated scene understanding. Neurocomputing 2015, 161, 65–71. [Google Scholar] [CrossRef]
- Tian, J.M.; Wang, G.Y.; Liu, J.G.; Xia, Y.C. Chinese license plate character segmentation using multiscale template matching. J. Electron. Imaging 2016, 25, 053005. [Google Scholar] [CrossRef]
- Chen, H.X.; Ding, X.Y. Research on license plate recognition based on template matching method. Appl. Mech. Mater. 2014, 668–669, 1106–1109. [Google Scholar] [CrossRef]
- Ryan, M.; Hanafiah, N. An examination of character recognition on ID card using template matching approach. Procedia Comput. Sci. 2015, 59, 520–529. [Google Scholar] [CrossRef]
- Zhang, Y.; Zha, Z.Q.; Bai, L.F. A license plate character segmentation method based on character contour and template matching. Appl. Mech. Mater. 2013, 333–335, 974–979. [Google Scholar] [CrossRef]
- Jung, M. 7-Segment Optical character recognition using template matching. J. Electron. Disp. Technol. 2020, 19, 130–134. [Google Scholar]
- Weng, Y.; Xia, C.L. A new deep learning-based handwritten character recognition system on mobile computing devices. Mob. Netw. Appl. 2019, 25, 402–411. [Google Scholar] [CrossRef]
- Kim, H.-H.; Park, J.-K.; Oh, J.-H.; Kang, D.-J. Multi-task convolutional neural network system for license plate recognition. Int. J. Control Autom. Syst. 2017, 15, 2942–2949. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.H.; Duan, Z.T. Chinese vehicle license plate recognition using kernel-based extreme learning machine with deep convolutional features. IET Intell. Transp. Syst. 2017, 12, 213–219. [Google Scholar] [CrossRef]
- Rakhshani, S.; Rashedi, E.; Nezamabadi-pour, H. Representation learning in a deep network for license plate recognition. Multimed. Tools Appl. 2020, 79, 13267–13289. [Google Scholar] [CrossRef]
- Cao, F.; Tian, Z.G.; Jiang, B.Z.; Zhang, H.S.; Chen, H.; Zhu, X.G. 3D Model Registration-Based Batch Wafer-ID Recognition Algorithm. IEEE Access 2021, 9, 150283–150291. [Google Scholar] [CrossRef]
- Hsu, W.C.; Yu, T.Y.; Chen, K.L. Wafer identification recognition by stroke analysis and template matching. Sens. Lett. 2012, 10, 1223–1229. [Google Scholar] [CrossRef]
- Soora, N.R.; Deshpande, P.S. Review of feature extraction techniques for character recognition. IETE J. Res. 2017, 64, 280–295. [Google Scholar] [CrossRef]
- Shao, J.H. Research on Wafer Identifier Recognition System in Complex Background. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2021. [Google Scholar]
- Xu, Z.H.; Yang, J.; Zhang, W.J.; Yang, Z.J. Regions of interest detection algorithm based on improved visual attention model. Appl. Mech. Mater. 2014, 513–517, 3368–3371. [Google Scholar] [CrossRef]
- Jiang, T.Y.; Li, C.; Yang, M.; Wang, Z.L. An improved YOLOv5 algorithm for object detection with an attention mechanism. Electronics 2022, 11, 2494. [Google Scholar] [CrossRef]
- Zang, D.; Chai, Z.L.; Zhang, J.Q.; Zhang, D.D.; Cheng, J.J. Vehicle license plate recognition using visual attention model and deep learning. J. Electron. Imaging 2015, 24, 033051. [Google Scholar] [CrossRef]
- Deng, C.F.; Wang, M.M.; Liu, L.; Liu, Y.; Jiang, Y.L. Extended feature pyramid network for small object detection. IEEE Trans. Multimed. 2022, 24, 1968–1979. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.L.; Jiao, B.W.; Wang, H.C.; Yu, Y.X. Research on road target detection algorithm based on YOLOv5. Comput. Eng. Appl. 2023, 59, 117–125. [Google Scholar] [CrossRef]
- Zhu, F.Z.; Wang, Y.Y.; Cui, J.Y.; Liu, G.X.; Li, H.L. Target detection for remote sensing based on the enhanced YOLOv4 with improved BiFPN. Egypt. J. Remote Sens. Space Sci. 2023, 26, 351–360. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, Z.X.; Hu, Y.X.; Ding, C.B. CPS-Det: An anchor-free based rotation detector for ship detection. Remote Sens. 2021, 13, 2208. [Google Scholar] [CrossRef]
- Fu, K.; Li, Y.; Sun, H.; Yang, X.; Xu, G.L.; Li, Y.T.; Sun, X. A ship rotation detection model in remote sensing images based on feature fusion pyramid network and deep reinforcement learning. Remote Sens. 2019, 10, 1922. [Google Scholar] [CrossRef]
- Hee, L.M.; Pang, Y.Y.; Ong, C.H.; Sim, H.M. Deep learning convolutional neural network for unconstrained license plate recognition. MATEC Web Conf. 2019, 255, 05002. [Google Scholar] [CrossRef]
- Li, C.L.; Zhang, Q.H.; Chen, W.H.; Jiang, X.B.; Yuan, B.; Yang, C.L. Insulator orientataion detection based on deep learning. J. Electr. Inform. Technol. 2020, 42, 1033–1040. [Google Scholar] [CrossRef]
- Shi, P.F.; Zhao, Z.X.; Fan, X.N.; Yan, X.J.; Yan, W.; Xin, Y.X. Remote sensing image object detection based on angle classification. IEEE Access 2021, 9, 118696–118707. [Google Scholar] [CrossRef]
- Fu, G.D.; Huang, J.; Yang, T.; Zheng, S.Y. Improved lightweight attention model based on CBAM. Comput. Eng. Appl. 2021, 57, 150–156. [Google Scholar]
- Junos, M.H.; Mohd Khairuddin, A.S.; Thannirmalai, S.; Dahari, M. Automatic detection of oil palm fruits from UAV images using an improved YOLO model. Vis. Comput. 2021, 38, 2341–2355. [Google Scholar] [CrossRef]
Categories | Real Value | Predicted Value |
---|---|---|
TP | 1 | 1 |
FN | 1 | 0 |
FP | 0 | 1 |
TN | 0 | 0 |
Experiment No. | CBAM-L Addition Layer Location | C5-CL Addition Layer Location | Loss |
---|---|---|---|
1 | 0, 1 Layer | None | 0.01696 |
2 | 0, 1 Layer | 2–7, 9–14 Layer | 0.0162 |
3 | 0, 1 Layer | 2–7, 9–14, 16–21 Layer | 0.01736 |
4 | None | 2–7, 9–14, 16–21 Layer | 0.01762 |
Method | Loss | mAP@0.5 | mAP@0.5:0.95 | F1 Score | Pr | Rc |
---|---|---|---|---|---|---|
YOLO v7 | 0.0155 | 0.9957 | 0.7815 | 0.98 | 0.9698 | 0.9905 |
YOLO v7-Tiny | 00178 | 0.9796 | 0.7588 | 0.94 | 0.9533 | 0.941 |
YOLO v5s | 0.0226 | 0.9463 | 0.7459 | 0.90 | 0.8947 | 0.9103 |
Improved YOLO | 0.0151 | 0.9944 | 0.7711 | 0.97 | 0.9551 | 0.9906 |
Method | Training Time | Parameters (Millions) | Detection Time (s) |
---|---|---|---|
YOLO v7 | 6 h 22 min | 32.42 | 7.307 |
YOLO v7-Tiny | 2 h 54 min | 6.10 | 4.395 |
YOLO v5s | 3 h 7 min | 7.11 | 4.282 |
Improved YOLO | 3 h 12 min | 6.13 | 4.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xie, J.; He, P. Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds. Electronics 2023, 12, 4293. https://doi.org/10.3390/electronics12204293
Zhao Y, Xie J, He P. Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds. Electronics. 2023; 12(20):4293. https://doi.org/10.3390/electronics12204293
Chicago/Turabian StyleZhao, Yufan, Jun Xie, and Peiyu He. 2023. "Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds" Electronics 12, no. 20: 4293. https://doi.org/10.3390/electronics12204293
APA StyleZhao, Y., Xie, J., & He, P. (2023). Deep Learning Neural Network-Based Detection of Wafer Marking Character Recognition in Complex Backgrounds. Electronics, 12(20), 4293. https://doi.org/10.3390/electronics12204293