A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network
Abstract
:1. Introduction
2. Related Works and Background
2.1. Data Fusion for Healthcare Data Security in IoT
2.2. Healthcare with Emotional Intelligence in IoT
3. Materials and Methods
- A.
- Low-Pass Filter
- B.
- Improved Context-Aware Data Fusion (ICDF)
Algorithm 1: Improved context-aware data fusion (ICDF) |
1: Input: Set of sensor data S 2: Step 1: Perform local data fusion to combine similar pieces of data into a single entity. 3: Fused data = (Data1 + Data2 + Data3 +… + DataN)/N 4: Step 2: For each entity in S, apply context-aware data-fusion methods to adjust the data based on context. 5: Step 3: Aggregate the results of the individual data-fusion methods into a single entity using a weighted average or other suitable method. 6: Step 4: Perform global data fusion on the aggregated entity using fuzzy logic or other suitable methods to adjust the data based on global context. 7: Output: Single fused data entity. |
F(ω) = (1/2) * ∫[f(t) * e^(jωt)] dt + (1/2) * [∫[f(t) * e^(jωt)] dt]*
- C.
- Advanced Recursive Feature Elimination (ARFE)
- Initialization: Set S = {x_1, x_2,…, x_n}, where x_i is the i-th feature in X. Train a machine learning model M_0 on the dataset using all the features in S. Compute the initial performance score J_0 = J(y, M_0(X)).
- Feature ranking: Compute the importance score of each feature in S, based on a ranking method such as correlation-based or filter-based methods.
- Advanced Recursive feature elimination: Eliminate the k least important features from S, based on their importance scores. Let S′ be the remaining features in S. Train a new machine learning model M_i on the dataset using the features in S′. Compute the performance score J_i = J(y, M_i(X)). If J_i > J_{i − 1}, set S = S′ and go to step 2. If J_i <= J_{i − 1}, terminate the algorithm and select the features in S_{i − 1} as the final feature subset.
- D.
- Emotional-Intelligence-Based Healthcare System
4. Results and Discussion
- Precision
- Recall
- Accuracy
- F1 Score
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ji, G.; Msigwa, C.; Bernard, D.; Lee, G.; Woo, J.; Yun, J. Health24: Health-related Data Collection from Wearable and Mobile Devices in Everyday Lives. In Proceedings of the 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju, Republic of Korea, 13–16 February 2023; pp. 336–337. [Google Scholar]
- Chen, J.; Song, X.; Huang, Z.; Li, J.; Wang, Z.; Luo, C.; Yu, F. On-Site Colonoscopy Autodiagnosis Using Smart Internet of Medical Things. IEEE Internet Things J. 2021, 9, 8657–8668. [Google Scholar] [CrossRef]
- Jain, D.K.; Boyapati, P.; Venkatesh, J.; Prakash, M. An intelligent cognitive-inspired computing with big data analytics framework for sentiment analysis and classification. Inf. Process. Manag. 2022, 59, 102758. [Google Scholar] [CrossRef]
- Ezhilarasi, M.; Kumar, A.; Shanmugapriya, M.; Ghanshala, A.; Gupta, A. Integrated Healthcare Monitoring System using Wireless Body Area Networks and Internet of Things. In Proceedings of the 2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 11–12 February 2023; pp. 1–5. [Google Scholar]
- Shrivastava, K.; Kumar, S.; Jain, D.K. An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network. Multimed. Tools Appl. 2019, 78, 29607–29639. [Google Scholar] [CrossRef]
- Xu, G.; Qi, C.; Dong, W.; Gong, L.; Liu, S.; Chen, S.; Liu, J.; Zheng, X. A Privacy-Preserving Medical Data Sharing Scheme Based on Blockchain. IEEE J. Biomed. Health Inform. 2022, 27, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Saranya, S.S.; Fatima, N.S. IoT-Based Patient Health Data Using Improved Context-Aware Data Fusion and Enhanced Recursive Feature Elimination Model. IEEE Access 2022, 10, 128318–128335. [Google Scholar] [CrossRef]
- Jin, H.; Luo, Y.; Li, P.; Mathew, J. A Review of Secure and Privacy- Preserving Medical Data Sharing. IEEE Access 2019, 7, 61656–61669. [Google Scholar] [CrossRef]
- Perez, S.; Hernandez-Ramos, J.L.; Pedone, D.; Rotondi, D.; Straniero, L.; Skarmeta, A.F. A Digital Envelope Approach Using Attribute-Based Encryption for Secure Data Exchange in IoT Scenarios. In Proceedings of the Global Internet of Things Summit, Geneva, Switzerland, 6–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef]
- Mukherjee, A.; Jain, D.K.; Yang, L. On-demand efficient clustering for next generation IoT applications: A hybrid NN approach. IEEE Sens. J. 2020, 21, 25457–25464. [Google Scholar] [CrossRef]
- Theodouli, A.; Arakliotis, S.; Moschou, K.; Votis, K.; Tzovaras, D. On the Design of a Blockchain-Based System to Facilitate Healthcare Data Sharing. In Proceedings of the 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering, New York, NY, USA, 31 July–3 August 2018; pp. 1374–1379. [Google Scholar] [CrossRef]
- Jan, M.A.; Zakarya, M.; Khan, M.; Mastorakis, S.; Menon, V.G.; Balasubramanian, V.; Rehman, A.U. An AI-enabled lightweight data fusion and load optimization approach for Internet of Things. Future Gener. Comput. Syst. 2021, 122, 40–51. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, R.; Anjum, A.; Wang, J.; Zhang, H.; Ma, M. Intelligent data fusion algorithm based on hybrid delay-aware adaptive clustering in wireless sensor networks. Future Gener. Comput. Syst. 2020, 104, 1–14. [Google Scholar] [CrossRef]
- Devika, E.; Saravanan, A. Enhanced gray wolf optimization for estimation of time difference of arrival in WSNs. Int. J. Pervasive Comput. Commun. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Devika, E.; Saravanan, A. A survey of node localization in wireless sensor networks using various Optimization algorithms. In Proceedings of the 2022 Third International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE), Bengaluru, India, 16–17 December 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Kandasamy, M.; Anto, S.; Baranitharan, K.; Rastogi, R.; Satwik, G.; Sampathkumar, A. Smart Grid Security Based on Blockchain with Industrial Fault Detection Using Wireless Sensor Network and Deep Learning Techniques. J. Sens. 2023, 2023, 3806121. [Google Scholar] [CrossRef]
- Arumugam, S.; Shandilya, S.K.; Bacanin, N. Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks. J. Web Eng. 2022, 21, 1323–1346. [Google Scholar] [CrossRef]
- Baloch, Z.; Shaikh, F.K.; Unar, M.A. A context-aware data fusion approach for health-IoT. Int. J. Inf. Technol. 2018, 10, 241–245. [Google Scholar] [CrossRef]
- Yang, F.; Wu, Q.; Hu, X.; Ye, J.; Yang, Y.; Rao, H.; Hu, B. Internet-of-Things-enabled data fusion method for sleep healthcare applications. IEEE Internet Things J. 2021, 8, 15892–15905. [Google Scholar] [CrossRef]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A systematic review on supervised and unsupervised machine learning algorithms for data science. In Supervised and Unsupervised Learning for Data Science; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–21. [Google Scholar]
- Satamraju, K.P.; Balakrishnan, M. A secured healthcare model for sensor data sharing with integrated emotional intelligence. IEEE Sens. J. 2022, 22, 16306–16313. [Google Scholar] [CrossRef]
- Mansour, R.F.; El Amraoui, A.; Nouaouri, I.; Díaz, V.G.; Gupta, D.; Kumar, S. Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems. IEEE Access 2021, 9, 45137–45146. [Google Scholar] [CrossRef]
- Pise, A.A.; Almusaini, K.K.; Ahanger, T.A.; Farouk, A.; Pareek, P.K.; Nuagah, S.J. Enabling artificial intelligence of things (aiot) healthcare architectures and listing security issues. Comput. Intell. Neurosci. 2022, 2022, 8421434. [Google Scholar] [CrossRef] [PubMed]
- Almaiah, M.A.; Ali, A.; Hajjej, F.; Pasha, M.F.; Alohali, M.A. A lightweight hybrid deep learning privacy preserving model for FC-based industrial internet of medical things. Sensors 2022, 22, 2112. [Google Scholar] [CrossRef] [PubMed]
- Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of security and privacy for the Internet of Medical Things (IoMT). In Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29 May 2019; pp. 457–464. [Google Scholar]
- Papaioannou, M.; Karageorgou, M.; Mantas, G.; Sucasas, V.; Essop, I.; Rodriguez, J.; Lymberopoulos, D. A survey on security threats and countermeasures in internet of medical things (IoMT). Trans. Emerg. Telecommun. Technol. 2022, 33, e4049. [Google Scholar] [CrossRef]
- Almaiah, M.A. A new scheme for detecting malicious attacks in wireless sensor networks based on blockchain technology. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 217–234. [Google Scholar]
- Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 719–724. [Google Scholar]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Razdan, S.; Sharma, S. Internet of medical things (IoMT): Overview, emerging technologies, and case studies. IETE Tech. Rev. 2022, 39, 775–788. [Google Scholar] [CrossRef]
- Altulaihan, E.; Almaiah, M.A.; Aljughaiman, A. Cybersecurity threats, countermeasures and mitigation techniques on the IoT: Future research directions. Electronics 2022, 11, 3330. [Google Scholar] [CrossRef]
- Albalawi, A.M.; Almaiah, M.A. Assessing and reviewing of cyber-security threats, attacks, mitigation techniques in IoT environment. J. Theor. Appl. Inf. Technol. 2022, 100, 2988–3011. [Google Scholar]
- Joyia, G.J.; Liaqat, R.M.; Farooq, A.; Rehman, S. Internet of medical things (IoMT): Applications, benefits and future challenges in healthcare domain. J. Commun. 2017, 12, 240–247. [Google Scholar]
- AlSalem, T.S.; Almaiah, M.A.; Lutfi, A. Cybersecurity Risk Analysis in the IoT: A Systematic Review. Electronics 2023, 12, 3958. [Google Scholar] [CrossRef]
- Almaiah, M.A. An Efficient Smart Weighted and Neighborhood-enabled Load Balancing Scheme for Constraint Oriented Networks. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Gautam, D.; Dixit, A.; Goyal, S.B.; Verma, C.; Kumar, M. A novel approach to enhance the quality of health care recommender system using fuzzy-genetic approach. J. Intell. Fuzzy Syst. 2023; 1–4, preprint. [Google Scholar]
- Ghubaish, A.; Salman, T.; Zolanvari, M.; Unal, D.; Al-Ali, A.; Jain, R. Recent advances in the internet-of-medical-things (IoMT) systems security. IEEE Internet Things J. 2020, 8, 8707–8718. [Google Scholar] [CrossRef]
- Javaheri, D.; Lalbakhsh, P.; Hosseinzadeh, M. A novel method for detecting future generations of targeted and metamorphic malware based on genetic algorithm. IEEE Access 2021, 9, 69951–69970. [Google Scholar] [CrossRef]
- Alsyouf, A.; Lutfi, A.; Al-Bsheish, M.; Jarrar, M.T.; Al-Mugheed, K.; Almaiah, M.A.; Alhazmi, F.N.; Masa’deh, R.E.; Anshasi, R.J.; Ashour, A. Exposure detection applications acceptance: The case of COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 7307. [Google Scholar] [CrossRef]
- Vishnu, S.; Ramson, S.J.; Jegan, R. Internet of medical things (IoMT)-An overview. In Proceedings of the 2020 5th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 5–6 March 2020; pp. 101–104. [Google Scholar]
- Mishra, K.N.; Chakraborty, C. A novel approach towards using big data and IoT for improving the efficiency of m-health systems. In Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–139. [Google Scholar]
Performance Metrics | |||||
---|---|---|---|---|---|
Algorithms | Recall | Precision | Accuracy | F1 Score | ROC-AUC Score |
CNN | 73.2 | 78.4 | 84.3 | 75.1 | 0.73 |
DCNN | 92.1 | 91.4 | 87.4 | 89.3 | 0.56 |
FRCNN | 85.3 | 89.1 | 83.2 | 81.5 | 0.61 |
Proposed EI-EDBN | 96.3 | 95.4 | 97.3 | 92.1 | 0.52 |
Performance Metrics | ||||
---|---|---|---|---|
DATABASE | Recall | Precision | Accuracy | F1 score |
DATASET 1 | 96.3 | 95.4 | 96.3 | 92.1 |
DATASET 2 | 95.3 | 94.2 | 96.1 | 91.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaiah, M.A.; Yelisetti, S.; Arya, L.; Babu Christopher, N.K.; Kaliappan, K.; Vellaisamy, P.; Hajjej, F.; Alkdour, T. A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network. Electronics 2023, 12, 4316. https://doi.org/10.3390/electronics12204316
Almaiah MA, Yelisetti S, Arya L, Babu Christopher NK, Kaliappan K, Vellaisamy P, Hajjej F, Alkdour T. A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network. Electronics. 2023; 12(20):4316. https://doi.org/10.3390/electronics12204316
Chicago/Turabian StyleAlmaiah, Mohammed Amin, Sandeep Yelisetti, Leena Arya, Nelson Kennedy Babu Christopher, Kumaresan Kaliappan, Pandimurugan Vellaisamy, Fahima Hajjej, and Tayseer Alkdour. 2023. "A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network" Electronics 12, no. 20: 4316. https://doi.org/10.3390/electronics12204316
APA StyleAlmaiah, M. A., Yelisetti, S., Arya, L., Babu Christopher, N. K., Kaliappan, K., Vellaisamy, P., Hajjej, F., & Alkdour, T. (2023). A Novel Approach for Improving the Security of IoT–Medical Data Systems Using an Enhanced Dynamic Bayesian Network. Electronics, 12(20), 4316. https://doi.org/10.3390/electronics12204316