Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform
Abstract
:1. Introduction
- Wavelet transform is applied to a Strength Pareto Evolutionary Algorithm 2 (SPEA2)-based BSS algorithm. Signals are analyzed on the frequency axis and applied to MOO. Thus, a performance increase was achieved in the separation of signals. With this developed algorithm, Discrete Wavelet Transform (DWT) is applied to the signals, and a suitable method for the analysis of non-stationary signals is obtained. Due to these processes, although the data size is reduced, the calculation cost of the proposed method also decreases [21].
- Contrary to the traditional method, the distance between the points is calculated by the Minkowski distance in obtaining the Pareto curve. In the simulation results, it is seen that the use of Minkowski distance has a positive effect on the results.
- The success rate has been proven with Inverted Generational Distance (IGD), Hypervolume (HV) and Spread (Δ or SP) metrics, which are frequently used in the performance measurement of optimization algorithms.
- Extensive simulations are performed to compare the proposed scheme with some recent well-known BSS techniques in the literature, like EEMD. The proposed algorithm is also compared with a classical MOO-BSS algorithm.
2. Materials and Methods
2.1. Blind Source Separation
2.2. Multi-Objective Optimization
2.3. SPEA2 and Minkowski Distance
2.4. Objective Function Used in SPEA2
2.5. Ensemble Empirical Mode Decomposition (EEMD)
2.6. Performance Metric
2.6.1. Inverted Generational Distance
2.6.2. Hypervolume
2.6.3. Spread
3. Proposed Method
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jukiewicz, M.; Buchwald, M.; Cysewska-Sobusiak, A. Finding optimal frequency and spatial filters accompanying blind signal separation of EEG data for SSVEP-based BCI. Int. J. Electron. Telecommun. 2018, 4, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Mahé, G.; Suzumura, G.G.; Moisan, L.; Suyama, R. A non-intrusive audio clarity index (NIAC) and its application to blind source separation. Signal Process. 2022, 194, 108448. [Google Scholar] [CrossRef]
- Ilgin, F.Y. Threshold optimisation with Bayesian approach in covariance absolute value detection method. Int. J. Electron. 2022, 109, 1680–1694. [Google Scholar] [CrossRef]
- Pelegrina, G.D.; Duarte, L.T. A multi-objective approach for post-nonlinear source separation and its application to ion-selective electrodes. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 2067–2071. [Google Scholar] [CrossRef]
- Ghazdali, A.; Ourdou, A.; Hakim, M.; Laghrib, A.; Mamouni, N.; Metrane, A. Robust approach for blind separation of noisy mixtures of independent and dependent sources. Appl. Comput. Harmon. Anal. 2022, 60, 426–445. [Google Scholar] [CrossRef]
- Pelegrina, G.D.; Duarte, L.T. A multi-objective approach for blind source extraction. In Proceedings of the 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 10–13 July 2016; pp. 1–5. [Google Scholar]
- Mokriš, M. The independent component analysis with the linear regression–predicting the energy costs of the public sector buildings in Croatia. Croat. Oper. Res. Rev. 2022, 13, 173–185. [Google Scholar] [CrossRef]
- Li, D.; Wong, W.E.; Pan, S.; Koh, L.S.; Li, S.; Chau, M. Automatic test case generation using many-objective search and principal component analysis. IEEE Access 2022, 10, 85518–85529. [Google Scholar] [CrossRef]
- Sahin, O.; Akay, B.; Karaboga, D. Archive-based multi-criteria Artificial Bee Colony algorithm for whole test suite generation. Eng. Sci. Technol. Int. J. 2021, 24, 806–817. [Google Scholar] [CrossRef]
- Erkoc, M.E.; Karaboga, N. A comparative study of multi-objective optimization algorithms for sparse signal reconstruction. Artif. Intell. Rev. 2022, 55, 1–29. [Google Scholar] [CrossRef]
- Chu, D.; Chen, H.; Chen, H. Blind source separation based on whale optimization algorithm. MATEC Web Conf. 2018, 173, 03052. [Google Scholar]
- Wang, R. Blind source separation based on adaptive artificial bee colony optimization and kurtosis. Circuits Syst. Signal Process. 2021, 40, 3338–3354. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, T. An analysis approach for multivariate vibration signals integrate HIWO/BBO optimized blind source separation with NA-MEMD. IEEE Access 2019, 7, 87233–87245. [Google Scholar] [CrossRef]
- Pelegrina, G.D.; Attux, R.; Duarte, L.T. Application of multi-objective optimization to blind source separation. Expert Syst. Appl. 2019, 131, 60–70. [Google Scholar] [CrossRef]
- Celik, H.; Karaboga, N. Blind Source Separation with Multi-Objective Optimization for Denoising. Elektron. Ir Elektrotechnika 2022, 28, 62–67. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, W.; Wang, N.; Zhao, L. A new method for independent component analysis with priori information based on multi-objective optimization. J. Neurosci. Methods 2017, 283, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, Z. Parameter identification of unsaturated seepage model of core rockfill dams using principal component analysis and multi-objective optimization. Structures 2022, 45, 145–162. [Google Scholar] [CrossRef]
- Macwan, R.; Benezeth, Y.; Mansouri, A. Heart rate estimation using remote photo plethysmography with multi-objective optimization. Biomed. Signal Process. Control 2019, 49, 24–33. [Google Scholar] [CrossRef]
- Elouaham, S.; Dliou, A.; Laaboubi, M.; Latif, R.; Elkamoun, N.; Zougagh, H. Filtering and analyzing normal and abnormal electromyogram signals. Indones. J. Electr. Eng. Comput. Sci. 2020, 20, 176–184. [Google Scholar] [CrossRef]
- Mitianoudis, N. Underdetermined Audio Source Separation Using Laplacian Mixture Modelling. In Blind Source Separation: Advances in Theory, Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 197–229. [Google Scholar]
- Syed, S.H.; Muralidharan, V. Feature extraction using Discrete Wavelet Transform for fault classification of planetary gearbox–A comparative study. Appl. Acoust. 2022, 188, 108572. [Google Scholar] [CrossRef]
- Xu, C.; Ni, Y.Q.; Wang, Y.W. A novel Bayesian blind source separation approach for extracting non-stationary and discontinuous components from structural health monitoring data. Eng. Struct. 2022, 269, 114837. [Google Scholar] [CrossRef]
- Kervazo, C.; Bobin, J.; Chenot, C. Blind separation of a large number of sparse sources. Signal Process. 2018, 150, 157–165. [Google Scholar] [CrossRef]
- Cheriyan, M.M.; Michael, P.A.; Kumar, A. Blind source separation with mixture models—A hybrid approach to MR brain classification. Magn. Reson. Imaging 2018, 54, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, I.; You, D. Multi-condition multi-objective optimization using deep reinforcement learning. J. Comput. Phys. 2022, 462, 111263. [Google Scholar] [CrossRef]
- Hancer, E.; Xue, B.; Zhang, M.; Karaboga, D.; Akay, B. Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 2018, 422, 462–479. [Google Scholar] [CrossRef]
- Xue, Y.; Li, M.; Shepperd, M.; Lauria, S.; Liu, X. A novel aggregation-based dominance for Pareto-based evolutionary algorithms to configure software product lines. Neurocomputing 2019, 364, 32–48. [Google Scholar] [CrossRef]
- Li, W.; Wang, R.; Zhang, T.; Ming, M.; Li, K. Reinvestigation of evolutionary many-objective optimization: Focus on the Pareto knee front. Inf. Sci. 2020, 522, 193–213. [Google Scholar] [CrossRef]
- Song, Y.; Fang, X. An Improved Strength Pareto Evolutionary Algorithm 2 with Adaptive Crossover Operator for Bi-Objective Distributed Unmanned Aerial Vehicle Delivery. Mathematics 2023, 11, 3327. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, B.; Wang, P.; Liang, J.; Yuan, Y.; Huang, Y.; Lei, X. Multi-objective optimal power flow based on improved strength Pareto evolutionary algorithm. Energy 2017, 122, 70–82. [Google Scholar] [CrossRef]
- Khanra, M.; Nandi, A.K. Optimal driving based trip planning of electric vehicles using evolutionary algorithms: A driving assistance system. Appl. Soft Comput. 2020, 93, 106361. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, W.; Zeng, X.; Yen, G.G. An evolutionary algorithm based on Minkowski distance for many-objective optimization. IEEE Trans. Cybern. 2018, 49, 3968–3979. [Google Scholar] [CrossRef]
- Fu, C.; Jianhua, Y. Granular Classification for Imbalanced Datasets: A Minkowski Distance-Based Method. Algorithms 2021, 14, 54. [Google Scholar] [CrossRef]
- Li, C.; Tao, Y.; Ao, W.; Yang, S.; Bai, Y. Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy 2018, 165, 1220–1227. [Google Scholar] [CrossRef]
- Elouaham, S.; Dliou, A.; Latif, R.; Laaboubi, M.; Zougagh, H.; Elkhadiri, K. Analysis Electroencephalogram Signals Using Denoising and Time-Frequency Techniques. Extraction 2021, 13, 14. [Google Scholar]
- Yang, Z.-X.; Zhong, J.-H. A Hybrid EEMD-Based SampEn and SVD for Acoustic Signal Processing and Fault Diagnosis. Entropy 2016, 18, 112. [Google Scholar] [CrossRef]
- Akay, B. Synchronous and asynchronous Pareto-based multi-objective artificial bee colony algorithms. J. Glob. Optim. 2013, 57, 415–445. [Google Scholar] [CrossRef]
- Sandoval, C.; Cuate, O.; González, L.C.; Trujillo, L.; Schütze, O. Towards fast approximations for the hypervolume indicator for multi-objective optimization problems by Genetic Programming. Appl. Soft Comput. 2022, 125, 109103. [Google Scholar] [CrossRef]
- Long, Q.; Li, G.; Jiang, L. A novel non-dominated sorting genetic algorithm for multi-objective optimization. J. Comput. Sci. 2021, 23, 31–43. [Google Scholar]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2018, 23, 173–187. [Google Scholar] [CrossRef]
- Yen, G.G.; He, Z. Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 2013, 18, 131–144. [Google Scholar] [CrossRef]
- Tang, W.; Liu, H.L.; Chen, L.; Tan, K.C.; Cheung, Y.M. Fast hypervolume approximation scheme based on a segmentation strategy. Inf. Sci. 2020, 509, 320–342. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. Novel performance metrics for robust multi-objective optimization algorithms. Swarm Evol. Comput. 2015, 21, 1–23. [Google Scholar] [CrossRef]
- Bahoura, M.; Ezzaidi, H.; Méthot, J.F. Filter group delays equalization for 2D discrete wavelet transform applications. Expert Syst. Appl. 2022, 200, 116954. [Google Scholar] [CrossRef]
- Naseer, R.A.; Nasim, M.; Sohaib, M.; Younis, C.J.; Mehmood, A.; Alam, M.; Massoud, Y. VLSI architecture design and implementation of 5/3 and 9/7 lifting Discrete Wavelet Transform. Integration 2022, 87, 253–259. [Google Scholar] [CrossRef]
- Devi, D.; Sophia, S.; Prabhu, S.B. Deep learning-based cognitive state prediction analysis using brain wave signal. In Cognitive Computing for Human-Robot Interaction; Academic Press: Cambridge, MA, USA, 2021; pp. 69–84. [Google Scholar]
- Bendahane, B.; Jenkal, W.; Laaboubi, M.; Latif, R. HDL Coder Tool for ECG Signal Denoising. In International Conference on Digital Technologies and Applications; Springer Nature: Cham, Switzerland, 2023; pp. 753–760. [Google Scholar]
- Mota-Carmona, J.R.; Pérez-Escamirosa, F.; Minor-Martínez, A.; Rodríguez-Reyna, R.M. Muscle fatigue detection in upper limbs during the use of the computer mouse using discrete wavelet transform: A pilot study. Biomed. Signal Process. Control 2022, 76, 103711. [Google Scholar] [CrossRef]
- Shen, M.; Wen, P.; Song, B.; Li, Y. An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods. Biomed. Signal Process. Control 2022, 77, 103820. [Google Scholar] [CrossRef]
- Yesilli, M.C.; Chen, J.; Khasawneh, F.A.; Guo, Y. Automated Surface Texture Analysis via Discrete Cosine Transform and Discrete Wavelet Transform. Precis. Eng. 2022, 77, 141–152. [Google Scholar] [CrossRef]
- Dolatabadi, S.; Seyedi, H.; Tohidi, S. A new method for loss of excitation protection of synchronous generators in the presence of static synchronous compensator based on the discrete wavelet transform. Electr. Power Syst. Res. 2022, 209, 107981. [Google Scholar] [CrossRef]
- Voice Sources. Available online: https://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html (accessed on 22 August 2023).
- Erkoc, M.E.; Karaboga, N. Sparse signal reconstruction by swarm intelligence algorithms. Eng. Sci. Technol. Int. J. 2021, 24, 319–330. [Google Scholar] [CrossRef]
- Hartland, N.P.; Maltoni, F.; Nocera, E.R.; Rojo, J.; Slade, E.; Vryonidou, E.; Zhang, C. A Monte Carlo global analysis of the Standard Model Effective Field Theory: The top quark sector. J. High Energy Phys. 2019, 1–78. [Google Scholar] [CrossRef]
Male | First Female | Second Female | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Samples | MO-BSS SNR (dB) | EEMD SNR (dB) | Proposed SNR (dB) | MO-BSS SNR (dB) | EEMD SNR (dB) | Proposed SNR (dB) | MO-BSS SNR (dB) | EEMD SNR (dB) | Proposed SNR (dB) |
2000 | 26 | 32 | 46 | 21 | 26 | 42 | 22 | 27 | 40 |
4000 | 25 | 30 | 49 | 22 | 26 | 48 | 19 | 25 | 45 |
6000 | 22 | 31 | 52 | 20 | 28 | 48 | 20 | 30 | 44 |
8000 | 22 | 30 | 50 | 20 | 27 | 47 | 18 | 25 | 46 |
10,000 | 23 | 33 | 52 | 21 | 29 | 49 | 22 | 28 | 47 |
12,000 | 24 | 36 | 53 | 22 | 31 | 48 | 22 | 32 | 47 |
14,000 | 25 | 37 | 54 | 23 | 33 | 50 | 22 | 34 | 49 |
IGD | HV | SP | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Samples | Best | Worst | Mean | Best | Worst | Mean | Best | Worst | Mean |
2000 | 0.00018 | 0.02153 | 0.00745 | 0.81474 | 0.02654 | 0.24543 | 0.73533 | 1.53324 | 1.24331 |
4000 | 0.00010 | 0.05841 | 0.00728 | 0.79833 | 0.02454 | 0.25273 | 0.71847 | 1.39819 | 1.14876 |
6000 | 0.00011 | 0.06378 | 0.00815 | 0.71433 | 0.03145 | 0.23533 | 0.63436 | 1.77003 | 1.14249 |
8000 | 0.00012 | 0.03791 | 0.01286 | 0.83285 | 0.04756 | 0.36541 | 0.62858 | 1.37510 | 1.13523 |
10,000 | 0.00048 | 0.04254 | 0.01376 | 0.98453 | 0.02545 | 0.49364 | 0.73531 | 1.53716 | 1.16355 |
12,000 | 0.00569 | 0.04176 | 0.01586 | 0.92735 | 0.05837 | 0.55747 | 0.84896 | 1.54331 | 1.15968 |
14,000 | 0.00211 | 0.09356 | 0.01723 | 0.93527 | 0.05355 | 0.58373 | 0.84544 | 1.28489 | 1.16447 |
IGD | HV | SP | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Samples | Best | Worst | Mean | Best | Worst | Mean | Best | Worst | Mean |
2000 | 0.00021 | 0.01954 | 0.00635 | 0.82567 | 0.02524 | 0.25754 | 0.71643 | 1.52633 | 1.23755 |
4000 | 0.00011 | 0.04231 | 0.00672 | 0.79935 | 0.02012 | 0.26976 | 0.70243 | 1.38355 | 1.13908 |
6000 | 0.00010 | 0.05343 | 0.00764 | 0.73867 | 0.03002 | 0.24765 | 0.61865 | 1.74976 | 1.13523 |
8000 | 0.00023 | 0.03187 | 0.01177 | 0.87355 | 0.03564 | 0.38122 | 0.61067 | 1.39366 | 1.12894 |
10,000 | 0.00039 | 0.03784 | 0.01112 | 0.99245 | 0.01855 | 0.51345 | 0.71964 | 1.51544 | 1.15743 |
12,000 | 0.00424 | 0.03294 | 0.01497 | 0.93867 | 0.04086 | 0.59446 | 0.82966 | 1.51754 | 1.14764 |
14,000 | 0.00121 | 0.07034 | 0.01618 | 0.94903 | 0.04176 | 0.59853 | 0.83760 | 1.31456 | 1.15345 |
IGD | HV | SP | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Samples | Best | Worst | Mean | Best | Worst | Mean | Best | Worst | Mean |
2000 | 0.00056 | 0.01744 | 0.00416 | 0.93453 | 0.01287 | 0.35743 | 0.61932 | 1.49473 | 1.00663 |
4000 | 0.00035 | 0.03643 | 0.00534 | 0.94143 | 0.01708 | 0.30262 | 0.62084 | 1.71843 | 1.01541 |
6000 | 0.00037 | 0.03648 | 0.00312 | 0.98119 | 0.01155 | 0.38449 | 0.79453 | 1.50024 | 1.00853 |
8000 | 0.00024 | 0.03154 | 0.00316 | 0.99109 | 0.01145 | 0.41036 | 0.70343 | 1.68433 | 1.09728 |
10,000 | 0.00078 | 0.03987 | 0.00382 | 0.83470 | 0.01158 | 0.49353 | 0.72184 | 1.71207 | 1.09935 |
12,000 | 0.00086 | 0.03521 | 0.00524 | 0.87123 | 0.01532 | 0.54103 | 0.68353 | 1.68124 | 1.02964 |
14,000 | 0.00075 | 0.03911 | 0.00623 | 0.89238 | 0.01213 | 0.56292 | 0.69357 | 1.30754 | 1.04277 |
Number of Samples | MO-BSS Avg, Time (s) | EEMD Avg, Time (s) | Proposed Avg, Time (s) |
---|---|---|---|
2000 | 5.74 | 1.14 | 5.21 |
4000 | 7.57 | 1.46 | 7.04 |
6000 | 8.36 | 1.93 | 7.83 |
8000 | 9.13 | 2.35 | 8.12 |
10,000 | 10.88 | 2.94 | 9.48 |
12,000 | 11.68 | 3.47 | 10.32 |
14,000 | 13.05 | 3.38 | 11.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, H.; Karaboga, N. Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform. Electronics 2023, 12, 4383. https://doi.org/10.3390/electronics12214383
Celik H, Karaboga N. Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform. Electronics. 2023; 12(21):4383. https://doi.org/10.3390/electronics12214383
Chicago/Turabian StyleCelik, Husamettin, and Nurhan Karaboga. 2023. "Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform" Electronics 12, no. 21: 4383. https://doi.org/10.3390/electronics12214383
APA StyleCelik, H., & Karaboga, N. (2023). Blind Source Separation with Strength Pareto Evolutionary Algorithm 2 (SPEA2) Using Discrete Wavelet Transform. Electronics, 12(21), 4383. https://doi.org/10.3390/electronics12214383