Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type
Abstract
:1. Introduction
2. Simulation Setup
3. RBF Neural Network
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Artem’ev, B.V.; Maslov, A.I.; Potapov, V.N.; Vedernikov, M.B. Use of X-ray thickness gauges in manufacturing rolled non-ferrous metals. Russ. J. Nondestruct. Test. 2003, 39, 459–464. [Google Scholar] [CrossRef]
- Allport, J.J.; Nucleonic Data Systems Inc. Dual Beam X-ray Thickness Gauge. U.S. Patent 4,037,104, 1977. [Google Scholar]
- Artemyev, I.B.; Artemiev, B.V.; Vladimirov, Y.L.; Vladimirov, L.V. Modernization of radiation detectors thickness gauge. J. Phys. Conf. Ser. 2017, 808, 012012. [Google Scholar] [CrossRef]
- Artemiev, B.V.; Maslov, A.I. X-ray thickness gages of the Rit10 family for thickness measurement at line production of rolled metal. In Proceedings of the Abstracts of 17th World Conference on Non-Destructive Testing, Shanghai, China, 25–28 October 2008. [Google Scholar]
- Nazemi, E.; Aminipour, M.; Olfateh, A.; Golgoun, S.M.; Davarpanah, M.R. Proposing an intelligent approach for measuring the thickness of metal sheets independent of alloy type. Appl. Radiat. Isot. 2019, 149, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Salgado, C.M.; de Freitas Dam, R.S.; de Carvalho Conti, C.; Salgado, W.L. Three-phase flow meters based on X-rays and artificial neural network to measure the flow compositions. Flow Meas. Instrum. 2021, 82, 102075. [Google Scholar] [CrossRef]
- Remillard, R.A.; Loewenstein, M.; Steiner, J.F.; Prigozhin, G.Y.; LaMarr, B.; Enoto, T.; Gendreau, K.C.; Arzoumanian, Z.; Markwardt, C.; Basak, A.; et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 2022, 163, 130. [Google Scholar] [CrossRef]
- Roshani, G.H.; Ali, P.J.; Mohammed, S.; Hanus, R.; Abdulkareem, L.; Alanezi, A.A.; Sattari, M.A.; Amiri, S.; Nazemi, E.; Eftekhari-Zadeh, E.; et al. Simulation study of utilizing X-ray tube in monitoring systems of liquid petroleum products. Processes 2021, 9, 828. [Google Scholar] [CrossRef]
- Salgado, C.M.; Dam, R.S.; Salgado, W.L.; Santos, M.C.; Schirru, R. Development of a deep rectifier neural network for fluid volume fraction prediction in multiphase flows by gamma-ray densitometry. Radiat. Phys. Chem. 2021, 189, 109708. [Google Scholar] [CrossRef]
- Pelowitz, D.B. MCNPX User’s Manual Version 2.5.0; Los Alamos National Laboratory: Los Alamos, NM, USA, 2005; Volume 76, p. 473. [Google Scholar]
- Pinilla, M.I. An MCNP Simulation Study of an Oil Well Logging Benchmarking Tool and a Test Enclosure; Kansas State University: Manhattan, KS, USA, 2019. [Google Scholar]
- Talaat, K.; Xi, J.; Baldez, P.; Hecht, A. Radiation dosimetry of inhaled radioactive aerosols: CFPD and MCNP transport simulations of radionuclides in the lung. Sci. Rep. 2019, 9, 17450. [Google Scholar] [CrossRef]
- Poorchitsaz, M.; Shirani Bidabadi, B.; Mohammadi, R. Investigating the Effect of Gamma Ray Source Activity on Down-hole Nuclear Density Toolâ s Reading Using Simulation by MCNP Code. Radiat. Saf. Meas. 2020, 9, 341–346. [Google Scholar]
- Sayyed, M.I.; Mahmoud, K.A.; Tashlykov, O.L.; Khandaker, M.U.; Faruque, M.R.I. Enhancement of the Shielding Capability of Soda–Lime Glasses with Sb2O3 Dopant: A Potential Material for Radiation Safety in Nuclear Installations. Appl. Sci. 2021, 11, 326. [Google Scholar] [CrossRef]
- Çağlar, M.; Karabul, Y.; Kılıç, M.; Özdemir, Z.G.; İçelli, O. Na2Si3O7/Ag micro and nano-structured glassy composites: The experimental and MCNP simulation surveys of their radiation shielding performances. Prog. Nucl. Energy 2021, 139, 103855. [Google Scholar] [CrossRef]
- Sun, W.; Hu, G.; Xu, H.; Li, Y.; Wang, C.; Men, T.; Ji, F.; Lao, W.; Yu, B.; Sheng, L.; et al. Study on the Influence of Reinforced Particles Spatial Arrangement on the Neutron Shielding Performance of the Composites. Materials 2022, 15, 4266. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Hammig, M.D. Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161353. [Google Scholar] [CrossRef]
- Jeong, M.; Kim, G. MCNP-polimi simulation for the compressed-sensing based reconstruction in a coded-aperture imaging CAI extended to partially-coded field-of-view. Nucl. Eng. Technol. 2021, 53, 199–207. [Google Scholar] [CrossRef]
- Kerr, P.; Cherepy, N.; Church, J.; Guethlein, G.; Hall, J.; McNamee, C.; O’Neal, S.; Champley, K.; Townsend, A.; Sasagawa, M.; et al. Neutron transmission imaging with a portable DT neutron generator. Radiat. Detect. Technol. Methods 2022, 6, 234–243. [Google Scholar] [CrossRef]
- Roshani, G.H.; Nazemi, E.; Feghhi, S.A.H. Investigation of using 60Co source and one detector for determining the flow regime and void fraction in gas–liquid twophase flows. Flow Meas. Instrum. 2016, 50, 73–79. [Google Scholar] [CrossRef]
- Hernandez, A.M.; Boone, J.M. Tungsten anode spectral model using interpolating cubic splines: Unfiltered X-ray spectra from 20 kV to 640 kV. Med. Phys. 2014, 41, 042101. [Google Scholar] [CrossRef]
- Sattari, M.A.; Hayati, M.; Shama, F.; Shah-Ebrahimi, S.M. A miniaturized filter design approach using GMDH neural networks. Microw. Opt. Technol. Lett. 2023, 65, 2507–2516. [Google Scholar] [CrossRef]
- Taylan, O.; Sattari, M.A.; Elhachfi Essoussi, I.; Nazemi, E. Frequency domain feature extraction investigation to increase the accuracy of an intelligent nondestructive system for volume fraction and regime determination of gas-water-oil three-phase flows. Mathematics 2021, 9, 2091. [Google Scholar] [CrossRef]
- Alamoudi, M.; Sattari, M.A.; Balubaid, M.; Eftekhari-Zadeh, E.; Nazemi, E.; Taylan, O.; Kalmoun, E.M. Application of gamma attenuation technique and artificial intelligence to detect scale thickness in pipelines in which two-phase flows with different flow regimes and void fractions exist. Symmetry 2021, 13, 1198. [Google Scholar] [CrossRef]
- Maraveas, C.; Bartzanas, T. Sensors for structural health monitoring of agricultural structures. Sensors 2021, 21, 314. [Google Scholar] [CrossRef] [PubMed]
- Maraveas, C.; Asteris, P.G.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Application of bio and nature-inspired algorithms in agricultural engineering. Arch. Comput. Methods Eng. 2023, 30, 1979–2012. [Google Scholar] [CrossRef]
- Hartman, E.J.; Keeler, J.D.; Kowalski, J.M. Layered neural networks with Gaussian hidden units as universal approxima-tors. Neural Comput. 1990, 2, 210–215. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, L.; Sohan, M.A.H.; Tian, X. Research on the Control Problem of Autonomous Underwater Vehicles Based on Strongly Coupled Radial Basis Function Conditions. Appl. Sci. 2023, 13, 7732. [Google Scholar] [CrossRef]
- Szwajka, K.; Zielińska-Szwajka, J.; Trzepieciński, T. The Use of a Radial Basis Function Neural Network and Fuzzy Modelling in the Assessment of Surface Roughness in the MDF Milling Process. Materials 2023, 16, 5292. [Google Scholar] [CrossRef]
- Ralambondrainy, H. A conceptual version of the k-means algorithm. Pattern Recognit. Lett. 1995, 16, 1147–1157. [Google Scholar] [CrossRef]
- Cottrell, M.; Rousset, P. The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data. In International Work-Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1997; pp. 861–871. [Google Scholar]
The Number of Hidden Layer Neurons | RMSE Train | RMSE Test |
---|---|---|
5 | 5.18 | 8.18 |
6 | 4.27 | 4.29 |
7 | 3.22 | 2.18 |
8 | 1.72 | 2.19 |
9 | 0.95 | 1.01 |
10 | 0.252 | 0.25 |
11 | 0.20 | 0.51 |
12 | 0.18 | 0.68 |
13 | 0.15 | 0.66 |
14 | 0.13 | 0.91 |
15 | 0.13 | 1.98 |
16 | 0.11 | 3.89 |
17 | 0.10 | 4.05 |
18 | 0.098 | 6.19 |
19 | 0.092 | 8.95 |
20 | 0.091 | 8.52 |
21 | 0.086 | 10.99 |
22 | 0.081 | 10.55 |
23 | 0.080 | 12.15 |
24 | 0.076 | 12.56 |
25 | 0.070 | 19.55 |
26 | 0.064 | 19.80 |
127 | 0.062 | 19.85 |
28 | 0.052 | 19.66 |
29 | 0.051 | 20.22 |
30 | 0.050 | 18.55 |
Type of Neural Network | RBF |
---|---|
Goal if MSE | 0 |
Spread | 0.1 |
MATLAB function | newrb |
Input neurons | 3 |
Hidden neurons | 10 |
Output neuron | 1 |
MRE% of all data | 2.11% |
RMSE of all data | 0.25 |
MAE of all data | 0.21 |
MRE% of train data | 2.37% |
RMSE of train data | 0.25 |
MAE of train data | 0.21 |
MRE% of test data | 1.50% |
RMSE of test data | 0.25 |
MAE of test data | 0.20 |
Item | Total Count of Transmission Detector | Total Count of Backscatter Detector | Maximum Value of Transmission Detector | Target Outputs (mm) | Outputs of Neural Network (mm) | Error | Type of Alloy |
---|---|---|---|---|---|---|---|
1 | 0.7069 | 0.0013 | 0.0128 | 1 | 1.1483 | −0.1483 | 1050 |
2 | 0.5339 | 0.0018 | 0.0101 | 3 | 2.9282 | 0.0718 | 1050 |
3 | 0.4297 | 0.0021 | 0.0086 | 5 | 4.9103 | 0.0897 | 1050 |
4 | 0.3563 | 0.0024 | 0.0075 | 7 | 6.7012 | 0.2988 | 1050 |
5 | 0.3002 | 0.0027 | 0.0064 | 9 | 8.6789 | 0.3211 | 1050 |
6 | 0.2559 | 0.0029 | 0.0055 | 11 | 10.8508 | 0.1492 | 1050 |
7 | 0.2200 | 0.0031 | 0.0047 | 13 | 12.8167 | 0.1833 | 1050 |
8 | 0.1903 | 0.0032 | 0.0040 | 15 | 14.7766 | 0.2234 | 1050 |
9 | 0.3563 | 0.0024 | 0.0075 | 17 | 16.7012 | 0.2988 | 1050 |
10 | 0.1446 | 0.0034 | 0.0030 | 19 | 19.1190 | −0.1190 | 1050 |
11 | 0.1268 | 0.0035 | 0.0026 | 21 | 21.2518 | −0.2518 | 1050 |
12 | 0.1116 | 0.0035 | 0.0022 | 23 | 23.2491 | −0.2491 | 1050 |
13 | 0.0985 | 0.0035 | 0.0019 | 25 | 25.0947 | −0.0947 | 1050 |
14 | 0.0871 | 0.0036 | 0.0017 | 27 | 27.0110 | −0.0110 | 1050 |
15 | 0.0772 | 0.0036 | 0.0014 | 29 | 28.9580 | 0.0420 | 1050 |
16 | 0.0686 | 0.0036 | 0.0013 | 31 | 31.0588 | −0.0588 | 1050 |
17 | 0.0611 | 0.0037 | 0.0011 | 33 | 33.1052 | −0.1052 | 1050 |
18 | 0.0545 | 0.0037 | 0.0009 | 35 | 35.2162 | −0.2162 | 1050 |
19 | 0.0486 | 0.0037 | 0.0008 | 37 | 37.3066 | −0.3066 | 1050 |
20 | 0.0435 | 0.0037 | 0.0007 | 39 | 39.3638 | −0.3638 | 1050 |
21 | 0.0390 | 0.0037 | 0.0006 | 41 | 41.3416 | −0.3416 | 1050 |
22 | 0.0349 | 0.0037 | 0.0005 | 43 | 43.2192 | −0.2192 | 1050 |
23 | 0.0314 | 0.0037 | 0.0005 | 45 | 44.9082 | 0.0918 | 1050 |
24 | 0.6922 | 0.0013 | 0.0123 | 1 | 0.7035 | 0.2965 | 3105 |
25 | 0.5143 | 0.0017 | 0.0099 | 3 | 3.2125 | −0.2125 | 3105 |
26 | 0.4094 | 0.0020 | 0.0083 | 5 | 5.3920 | −0.3920 | 3105 |
27 | 0.3367 | 0.0023 | 0.0072 | 7 | 7.2782 | −0.2782 | 3105 |
28 | 0.2818 | 0.0025 | 0.0061 | 9 | 9.5102 | −0.5102 | 3105 |
29 | 0.2387 | 0.0027 | 0.0051 | 11 | 11.6542 | −0.6542 | 3105 |
30 | 0.2041 | 0.0028 | 0.0043 | 13 | 13.5342 | −0.5342 | 3105 |
31 | 0.1755 | 0.0029 | 0.0037 | 15 | 15.4634 | −0.4634 | 3105 |
32 | 0.1520 | 0.0030 | 0.0032 | 17 | 17.4814 | −0.4814 | 3105 |
33 | 0.1324 | 0.0031 | 0.0027 | 19 | 19.4891 | −0.4891 | 3105 |
34 | 0.1156 | 0.0032 | 0.0023 | 21 | 21.3380 | −0.3380 | 3105 |
35 | 0.1014 | 0.0032 | 0.0019 | 23 | 23.1459 | −0.1459 | 3105 |
36 | 0.0891 | 0.0032 | 0.0017 | 25 | 24.9402 | 0.0598 | 3105 |
37 | 0.0785 | 0.0033 | 0.0014 | 27 | 26.7927 | 0.2073 | 3105 |
38 | 0.0693 | 0.0033 | 0.0012 | 29 | 28.8627 | 0.1373 | 3105 |
39 | 0.0615 | 0.0033 | 0.0010 | 31 | 30.9216 | 0.0784 | 3105 |
40 | 0.0546 | 0.0033 | 0.0009 | 33 | 33.0684 | −0.0684 | 3105 |
41 | 0.0485 | 0.0033 | 0.0008 | 35 | 35.1807 | −0.1807 | 3105 |
42 | 0.0432 | 0.0033 | 0.0006 | 37 | 37.2869 | −0.2869 | 3105 |
43 | 0.0385 | 0.0034 | 0.0006 | 39 | 39.3344 | −0.3344 | 3105 |
44 | 0.0344 | 0.0034 | 0.0005 | 41 | 41.2112 | −0.2112 | 3105 |
45 | 0.0308 | 0.0034 | 0.0004 | 43 | 42.9103 | 0.0897 | 3105 |
46 | 0.0276 | 0.0034 | 0.0004 | 45 | 44.5651 | 0.4349 | 3105 |
47 | 0.7052 | 0.0013 | 0.0127 | 1 | 1.0867 | −0.0867 | 5052 |
48 | 0.5319 | 0.0017 | 0.0101 | 3 | 2.9564 | 0.0436 | 5052 |
49 | 0.4277 | 0.0021 | 0.0086 | 5 | 4.9563 | 0.0437 | 5052 |
50 | 0.3545 | 0.0024 | 0.0075 | 7 | 6.7492 | 0.2508 | 5052 |
51 | 0.2988 | 0.0026 | 0.0064 | 9 | 8.7379 | 0.2621 | 5052 |
52 | 0.2546 | 0.0028 | 0.0055 | 11 | 10.8987 | 0.1013 | 5052 |
53 | 0.2189 | 0.0030 | 0.0047 | 13 | 12.8419 | 0.1581 | 5052 |
54 | 0.1894 | 0.0031 | 0.0040 | 15 | 14.7669 | 0.2331 | 5052 |
55 | 0.1647 | 0.0032 | 0.0035 | 17 | 16.8500 | 0.1500 | 5052 |
56 | 0.1440 | 0.0033 | 0.0030 | 19 | 18.9809 | 0.0191 | 5052 |
57 | 0.1264 | 0.0034 | 0.0026 | 21 | 21.0569 | −0.0569 | 5052 |
58 | 0.1112 | 0.0034 | 0.0022 | 23 | 22.9636 | 0.0364 | 5052 |
59 | 0.0982 | 0.0035 | 0.0019 | 25 | 24.7798 | 0.2202 | 5052 |
60 | 0.0869 | 0.0035 | 0.0016 | 27 | 26.6535 | 0.3465 | 5052 |
61 | 0.0770 | 0.0035 | 0.0014 | 29 | 28.5749 | 0.4251 | 5052 |
62 | 0.0685 | 0.0036 | 0.0012 | 31 | 30.6065 | 0.3935 | 5052 |
63 | 0.0611 | 0.0036 | 0.0011 | 33 | 32.6834 | 0.3166 | 5052 |
64 | 0.0544 | 0.0036 | 0.0009 | 35 | 34.7513 | 0.2487 | 5052 |
65 | 0.0486 | 0.0036 | 0.0008 | 37 | 36.8039 | 0.1961 | 5052 |
66 | 0.0435 | 0.0036 | 0.0007 | 39 | 38.8587 | 0.1413 | 5052 |
67 | 0.0390 | 0.0036 | 0.0006 | 41 | 40.8243 | 0.1757 | 5052 |
68 | 0.0349 | 0.0036 | 0.0005 | 43 | 42.6907 | 0.3093 | 5052 |
69 | 0.0314 | 0.0036 | 0.0004 | 45 | 44.4360 | 0.5640 | 5052 |
70 | 0.7073 | 0.0013 | 0.0128 | 1 | 1.1634 | −0.1634 | 6061 |
71 | 0.5343 | 0.0018 | 0.0101 | 3 | 2.9220 | 0.0780 | 6061 |
72 | 0.4301 | 0.0021 | 0.0086 | 5 | 4.8987 | 0.1013 | 6061 |
73 | 0.3568 | 0.0024 | 0.0075 | 7 | 6.6871 | 0.3129 | 6061 |
74 | 0.3009 | 0.0027 | 0.0064 | 9 | 8.6485 | 0.3515 | 6061 |
75 | 0.2564 | 0.0029 | 0.0055 | 11 | 10.8200 | 0.1800 | 6061 |
76 | 0.2206 | 0.0031 | 0.0047 | 13 | 12.7792 | 0.2208 | 6061 |
77 | 0.1909 | 0.0032 | 0.0041 | 15 | 14.7359 | 0.2641 | 6061 |
78 | 0.1660 | 0.0033 | 0.0035 | 17 | 16.8661 | 0.1339 | 6061 |
79 | 0.1452 | 0.0034 | 0.0030 | 19 | 19.0688 | −0.0688 | 6061 |
80 | 0.1273 | 0.0034 | 0.0026 | 21 | 21.1638 | −0.1638 | 6061 |
81 | 0.1121 | 0.0035 | 0.0023 | 23 | 23.1178 | −0.1178 | 6061 |
82 | 0.0990 | 0.0035 | 0.0019 | 25 | 25.0342 | −0.0342 | 6061 |
83 | 0.0875 | 0.0036 | 0.0017 | 27 | 26.8872 | 0.1128 | 6061 |
84 | 0.0776 | 0.0036 | 0.0015 | 29 | 28.8727 | 0.1273 | 6061 |
85 | 0.0690 | 0.0036 | 0.0013 | 31 | 30.8978 | 0.1022 | 6061 |
86 | 0.0614 | 0.0037 | 0.0011 | 33 | 32.9820 | 0.0180 | 6061 |
87 | 0.0548 | 0.0037 | 0.0009 | 35 | 35.0459 | −0.0459 | 6061 |
88 | 0.0489 | 0.0037 | 0.0008 | 37 | 37.1411 | −0.1411 | 6061 |
89 | 0.0438 | 0.0037 | 0.0007 | 39 | 39.1852 | −0.1852 | 6061 |
90 | 0.0392 | 0.0037 | 0.0006 | 41 | 41.2230 | −0.2230 | 6061 |
91 | 0.0352 | 0.0037 | 0.0005 | 43 | 43.1059 | −0.1059 | 6061 |
92 | 0.0316 | 0.0037 | 0.0005 | 45 | 44.8042 | 0.1958 | 6061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayet, A.M.; Shah, M.U.H.; Hanus, R.; Loukil, H.; Parayangat, M.; Muqeet, M.A.; Eftekhari-Zadeh, E.; Qaisi, R.M.A. Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type. Electronics 2023, 12, 4504. https://doi.org/10.3390/electronics12214504
Mayet AM, Shah MUH, Hanus R, Loukil H, Parayangat M, Muqeet MA, Eftekhari-Zadeh E, Qaisi RMA. Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type. Electronics. 2023; 12(21):4504. https://doi.org/10.3390/electronics12214504
Chicago/Turabian StyleMayet, Abdulilah Mohammad, Muhammad Umer Hameed Shah, Robert Hanus, Hassen Loukil, Muneer Parayangat, Mohammed Abdul Muqeet, Ehsan Eftekhari-Zadeh, and Ramy Mohammed Aiesh Qaisi. 2023. "Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type" Electronics 12, no. 21: 4504. https://doi.org/10.3390/electronics12214504
APA StyleMayet, A. M., Shah, M. U. H., Hanus, R., Loukil, H., Parayangat, M., Muqeet, M. A., Eftekhari-Zadeh, E., & Qaisi, R. M. A. (2023). Combination of a Nondestructive Testing Method with Artificial Neural Network for Determining Thickness of Aluminum Sheets Regardless of Alloy’s Type. Electronics, 12(21), 4504. https://doi.org/10.3390/electronics12214504