Coverage Enhancement of Light-Emitting Diode Array in Underwater Internet of Things over Optical Channels
Abstract
:1. Introduction
2. System Model
2.1. Absorption and Scattering
2.2. MC Simulation Method
2.3. BER Performance Analysis
3. Simulation Analysis and Results
3.1. Layout Design of LED Array
3.2. Simulation Setup
3.3. Results and Discussion
3.3.1. Received Optical Power Distribution
3.3.2. Mean Square Error
3.3.3. BER Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, G.; Xu, J. Review on Long-distance Underwater wireless optical communication. In Proceedings of the 2021 19th International Conference on Optical Communications and Networks (ICOCN), Qufu, China, 23–27 August 2021; pp. 1–4. [Google Scholar]
- Liu, T.; Zhang, H.; Zhang, Y.; Song, J. Experimental demonstration of LED based underwater wireless optical communication. In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 1501–1504. [Google Scholar]
- Li, J.; Yang, B.; Ye, D.; Wang, L.; Fu, K.; Piao, J.; Wang, Y. A real-time, full-duplex system for underwater wireless optical communication: Hardware structure and optical link model. IEEE Access 2020, 8, 109372–109387. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Zhao, M.; Jiang, F.; Chi, N. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception. Appl. Opt. 2019, 58, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Shanmugam, P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system. Opt. Commun. 2018, 408, 3–14. [Google Scholar] [CrossRef]
- Gładysz, S.; Segel, M.; Montoya, J.; Toselli, I.; Gasperin, O.J.G.; Stein, K. Modelling, measurement and correction of underwater turbulence effects on optical communications. In Proceedings of the 2021 5th Underwater Communications and Networking Conference (UComms), Lerici, Italy, 31 August–2 September 2021; pp. 1–4. [Google Scholar]
- Zhang, S.; Zhang, L.; Wang, Z.; Quan, J.; Cheng, J.; Dong, Y. On Performance of Underwater Wireless Optical Communications under Turbulence. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 10–13 January 2020. [Google Scholar]
- Semernik, I.V.; Demyanenko, A.V.l.; Samonova, C.V.; Bender, O.V.; Tarasenko, A.A. Modelling of an underwater wireless optical communication channel. In Proceedings of the 2023 Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russian, 26–30 June 2023; pp. 468–471. [Google Scholar]
- Illi, E.; Bouanani, F.E.; Park, K.H.; Ayoub, F.; Alouini, M.S. An improved accurate solver for the time-dependent RTE in underwater optical wireless communications. IEEE Access 2019, 7, 96478–96494. [Google Scholar] [CrossRef]
- Ma, T.; Du, Z.; Xu, J. Modeling for underwater optical channel in relatively turbid waters based on the Monte Carlo method. In Proceedings of the 2021 13th International Conference on Advanced Infocomm Technology (ICAIT), Yanji, China, 15–18 October 2021; pp. 122–127. [Google Scholar]
- Geldard, C.T.; Thompson, J.; Leitgeb, E.; Popoola, W.O. Optical wireless underwater channel modelling in the presence of turbulence. In Proceedings of the 2018 IEEE British and Irish Conference on Optics and Photonics (BICOP), London, UK, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Yuan, R.; Ma, J.; Su, P.; Dong, Y.; Cheng, J. Monte-Carlo integration models for multiple scattering based optical wireless communication. IEEE Trans. Commun. 2019, 68, 334–348. [Google Scholar] [CrossRef]
- Nezamalhosseini, S.A.; Chen, L.R. Optimal power allocation for MIMO underwater wireless optical communication systems using channel state information at the transmitter. IEEE J. Ocean. Eng. 2020, 46, 319–325. [Google Scholar] [CrossRef]
- Ijeh, I.C.; Khalighi, M.A.; Elamassie, M.; Hranilovic, S.; Uysal, M. Outage probability analysis of a vertical underwater wireless optical link subject to oceanic turbulence and pointing errors. J. Opt. Commun. Netw. 2022, 14, 439–453. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, R.; Lin, B.; Yin, H. Multi-degree-of-freedom for underwater optical wireless communication with improved transmission performance. J. Mar. Sci. Eng. 2022, 11, 48. [Google Scholar] [CrossRef]
- Ding, J.; Huang, Z.; Ji, Y. Evolutionary algorithm based power coverage optimization for visible light communications. IEEE Commun. Lett. 2012, 16, 439–441. [Google Scholar] [CrossRef]
- Liu, H.; Lin, Z.; Xu, Y.; Chen, Y.; Pu, X. Coverage uniformity with improved genetic simulated annealing algorithm for indoor Visible Light Communications. Opt. Commun. 2019, 439, 156–163. [Google Scholar] [CrossRef]
- Varma, G.P. Optimum power allocation for uniform illuminance in indoor visible light communication. Opt. Express 2018, 26, 8679–8689. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, A.; Ju, J.; Guo, L. Optimization lighting layout of indoor visible light communication system based on improved artificial fish swarm algorithm. J. Opt. 2020, 22, 035701. [Google Scholar]
- Huang, L.; Wang, P.; Wang, J.; Chi, S.; Niu, S.; Nan, X.; Che, H. Optimized design of the light source for an indoor visible light communication system based on an improved bat algorithm. Appl. Opt. 2020, 59, 10638–10644. [Google Scholar] [CrossRef]
- Liu, A.; Yuan, Y.; Yin, H. Optimization of LED array spatial coverage characteristics in underwater wireless optical communication. J. Mar. Sci. Eng. 2023, 11, 253. [Google Scholar] [CrossRef]
- Gabriel, C.; Khalighi, M.A.; Bourennane, S.; Léon, P.; Rigaud, V. Monte-Carlo-based channel characterization for underwater optical communication systems. J. Opt. Commun. Netw. 2013, 5, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; Qiu, H.; Chen, X.; Fu, J.; Musa, M.; Li, X. Spatial correlation analysis of imaging MIMO for underwater visible light communication. Opt. Commun. 2019, 443, 221–229. [Google Scholar] [CrossRef]
- Zhang, J.; Kou, L.; Yang, Y.; He, F.; Duan, Z. Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence. Opt. Commun. 2020, 475, 126214. [Google Scholar] [CrossRef]
- Eso, E.; Ghassemlooy, Z.; Zvanovec, S.; Sathian, J.; Abadi, M.M.; Younus, O.I. Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging. Sensors 2021, 21, 2751. [Google Scholar] [CrossRef]
- Jamali, M.V.; Salehi, J.A.; Akhoundi, F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme. IEEE Trans. Commun. 2016, 65, 1176–1192. [Google Scholar] [CrossRef]
- Abshire, J.B. Performance of OOK and low-order PPM modulations in optical communications when using APD-based receivers. IEEE Trans. Commun. 1984, 32, 1140–1143. [Google Scholar] [CrossRef]
- Che, H.; Wang, P.; Chi, S.; Sun, Y.; Yang, T.; Wang, Z. LED layout optimization in visible light communication system by a hybrid immune clonal bat algorithm. Opt. Commun. 2022, 520, 128532. [Google Scholar] [CrossRef]
Typical Seawater | a (m−1) | b (m−1) | c (m−1) | Albedo |
---|---|---|---|---|
clean seawater | 0.114 | 0.037 | 0.151 | 0.25 |
coastal seawater | 0.179 | 0.219 | 0.398 | 0.55 |
harbor seawater | 0.366 | 1.824 | 2.190 | 0.83 |
Parameters | Value |
---|---|
quantity of LED array | 16 |
divergence angle | 20° |
pattern length | 220 − 1 |
receiver field of view | 180° |
size of receiving plane | 10 m × 10 m |
data rate | 0.1 Gbps |
Transmission Depth (m) | LED Layout | Maximum Received Power (dBm) | Minimum Received Power (dBm) | PPD |
---|---|---|---|---|
ellipse-compensated layout | 27.42 | 5.20 | 0.81 | |
5 m | ring-compensated layout | 28.93 | 3.27 | 0.89 |
lemniscate-compensated layout | 27.96 | 5.76 | 0.79 | |
ellipse-compensated layout | 23.08 | 7.31 | 0.68 | |
7 m | ring-compensated layout | 24.30 | 6.00 | 0.75 |
lemniscate-compensated layout | 23.07 | 7.94 | 0.66 | |
ellipse-compensated layout | 18.60 | 6.01 | 0.68 | |
9 m | ring-compensated layout | 19.54 | 5.60 | 0.71 |
lemniscate-compensated layout | 18.77 | 6.46 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Yao, H.; Zhao, H.; Yuan, Y.; Wang, Y. Coverage Enhancement of Light-Emitting Diode Array in Underwater Internet of Things over Optical Channels. Electronics 2023, 12, 4736. https://doi.org/10.3390/electronics12234736
Liu A, Yao H, Zhao H, Yuan Y, Wang Y. Coverage Enhancement of Light-Emitting Diode Array in Underwater Internet of Things over Optical Channels. Electronics. 2023; 12(23):4736. https://doi.org/10.3390/electronics12234736
Chicago/Turabian StyleLiu, Anliang, Huiping Yao, Haobo Zhao, Yingming Yuan, and Yujia Wang. 2023. "Coverage Enhancement of Light-Emitting Diode Array in Underwater Internet of Things over Optical Channels" Electronics 12, no. 23: 4736. https://doi.org/10.3390/electronics12234736
APA StyleLiu, A., Yao, H., Zhao, H., Yuan, Y., & Wang, Y. (2023). Coverage Enhancement of Light-Emitting Diode Array in Underwater Internet of Things over Optical Channels. Electronics, 12(23), 4736. https://doi.org/10.3390/electronics12234736