Development of Mobile App to Enable Local Update on Mapping API: Construction Sites Monitoring through Digital Twin
Abstract
:1. Introduction
2. System Overview
2.1. Query Scene
2.2. Perspective Correction
2.3. Geolocation Information
2.4. Overlay Scene
2.5. User-Designated Path Input
2.6. Coordinates Transform for UGV Domain
3. Test
3.1. Description of the Test Area
3.2. AVD Specifications
- Android API 33 (Android 13 code name: Tiramisu)
- Device Model: Pixel 3
- Screen size: 1080 × 2028
- Google Maps API v2
3.3. Description of Query Scenes
3.4. Overlay Scene and Error Analysis
3.5. User-Designated Path Input
3.6. Coordinate Transform to UGV Domain and Error Analysis
4. Validation
4.1. Description of Construction Sites
4.2. Result of Overlayed Scene
4.2.1. Construction Site #1
4.2.2. Construction Site #2
5. Conclusions
6. Future Work
- With the current version of the app, while functional, the offset errors are propagated during the corners selection of the image to compute the homography matrix. Therefore, one notable area of improvement lies in the integration of a zoom capability. This feature will allow the user to choose more specific pixel points that are not easily noticeable because of the screen’s size limitation when projecting the images.
- After warping the source image, an internal cropping algorithm was implemented inside the mobile application. However, during the validation section, we realized that depending on the resolution and size of the images the cropping algorithm does not always return an image without black pixels inside the images. Because of this, it would be necessary to implement a way to return PNG images so that when overlaying it over Google Maps none of the black pixels are displayed.
- Since the mobile application has not been integrated with the UGV, we haven’t tested the communication protocol. The selection of the MQTT protocol was made based on the benefits that it offers for the circumstances inside a construction site. The correct integration will ensure that no data is lost so that the UGV can complete the inspection based on the desired path. Furthermore, comparing the odometry of the UGV with the previously drawn path will ensure that the path is properly followed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awwad, R.; El Souki, O.; Jabbour, M. Construction safety practices and challenges in a Middle Eastern developing country. Saf. Sci. 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Choi, J.; Dyke, S.J. CrowdLIM: Crowdsourcing to enable lifecycle infrastructure management. Comput. Ind. 2020, 115, 103185. [Google Scholar] [CrossRef]
- Lattanzi, D.; Miller, G. Review of robotic infrastructure inspection systems. J. Infrastruct. Syst. 2017, 23, 04017004. [Google Scholar] [CrossRef]
- Kim, J.H.; Kwon, J.W.; Seo, J. Multi-UAV-based stereo vision system without GPS for ground obstacle mapping to assist path planning of UGV. Electron. Lett. 2014, 50, 1431–1432. [Google Scholar] [CrossRef]
- Asadi, K.; Suresh, A.K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. An integrated UGV-UAV system for construction site data collection. Autom. Constr. 2020, 112, 103068. [Google Scholar] [CrossRef]
- Choi, J.; Yeum, C.M.; Dyke, S.J.; Jahanshahi, M.R. Computer-aided approach for rapid post-event visual evaluation of a building façade. Sensors 2018, 18, 3017. [Google Scholar] [CrossRef] [PubMed]
- Langley, R.B. Rtk gps. GPS World 1998, 9, 70–76. [Google Scholar]
- Isaac, S.; Edrei, T. A statistical model for dynamic safety risk control on construction sites. Autom. Constr. 2016, 63, 66–78. [Google Scholar] [CrossRef]
- Sud, A.; Andersen, E.; Curtis, S.; Lin, M.C.; Manocha, D. Real-time path planning in dynamic virtual environments using multiagent navigation graphs. IEEE Trans. Vis. Comput. Graph. 2008, 14, 526–538. [Google Scholar] [CrossRef]
- Sattineni, A.; Schmidt, T. Implementation of mobile devices on jobsites in the construction industry. Procedia Eng. 2015, 123, 488–495. [Google Scholar] [CrossRef]
- Biel, B.; Grill, T.; Gruhn, V. Exploring the benefits of the combination of a software architecture analysis and a usability evaluation of a mobile application. J. Syst. Softw. 2010, 83, 2031–2044. [Google Scholar] [CrossRef]
- Nah, F.F.H.; Siau, K.; Sheng, H. The value of mobile applications: A utility company study. Commun. ACM 2005, 48, 85–90. [Google Scholar] [CrossRef]
- Choi, K.; Park, S.; Joe, J.; Kim, S.I.; Jo, J.H.; Kim, E.J.; Cho, Y.H. Review of infiltration and airflow models in building energy simulations for providing guidelines to building energy modelers. Renew. Sustain. Energy Rev. 2023, 181, 113327. [Google Scholar] [CrossRef]
- Joe, J.; Im, P.; Cui, B.; Dong, J. Model-based predictive control of multi-zone commercial building with a lumped building modelling approach. Energy 2023, 263, 125494. [Google Scholar] [CrossRef]
- Joe, J.; Im, P.; Dong, J. Empirical modeling of direct expansion (Dx) cooling system for multiple research use cases. Sustainability 2020, 12, 8738. [Google Scholar] [CrossRef]
- Joe, J.; Min, S.; Oh, S.; Jung, B.; Kim, Y.M.; Kim, D.W.; Lee, S.E.; Yi, D.H. Development of Simplified Building Energy Prediction Model to Support Policymaking in South Korea—Case Study for Office Buildings. Sustainability 2022, 14, 6000. [Google Scholar] [CrossRef]
- Nguyen-Huu, P.N.; Titus, J.; Tilbury, D.; Ulsoy, G. Reliability and Failure in Unmanned Ground Vehicle (UGV); GRRC Technical Report 2009-01; Digit. Equip. Corp.: Maynard, MA, USA, 2009. [Google Scholar]
- Golparvar-Fard, M.; Peña-Mora, F.; Arboleda, C.A.; Lee, S. Visualization of construction progress monitoring with 4D simulation model overlaid on time-lapsed photographs. J. Comput. Civ. Eng. 2009, 23, 391–404. [Google Scholar] [CrossRef]
- Hyun, M.; Kim, J.-H. Drone View Contents Design Using The GPS-Based Drones and VR. In Proceedings of the Korea Information Processing Society Conference, Seoul, Republic of Korea, 9–10 June 2016; Korea Information Processing Society: Seoul, Republic of Korea, 2016. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Visibridon; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Szeliski, R. Computer Vision: Algorithms and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Bradski, G. The openCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Forsyth, D.A.; Ponce, J. A modern approach. Comput. Vis. Mod. Approach 2003, 17, 21–48. [Google Scholar]
- Atmoko, R.; Riantini, R.; Hasin, M.K. IoT real time data acquisition using MQTT protocol. J. Phys. Conf. Ser. 2017, 853, 012003. [Google Scholar] [CrossRef]
Ground Truth | ||||||
---|---|---|---|---|---|---|
# | Latitude | Longitude | X [106 m] | Y [106 m] | X [106 m] | Y [106 m] |
1 | 37.3737001430493 | 126.666829884052 | 2.9340891 | 41.3888354 | 2.93408824 | 41.38883441 |
2 | 37.3737001430493 | 126.666832230985 | 2.9340911 | 41.3888354 | 2.93409024 | 41.38883441 |
3 | 37.3736980115157 | 126.666832566261 | 2.9340914 | 41.388833 | 2.93409054 | 41.38883201 |
4 | 37.3736980115157 | 126.666834577918 | 2.9340932 | 41.388833 | 2.93409234 | 41.38883201 |
5 | 37.3736969457488 | 126.666838936507 | 2.934097 | 41.3888317 | 2.93409614 | 41.38883071 |
6 | 37.3736969457488 | 126.666840612888 | 2.9340985 | 41.3888316 | 2.93409764 | 41.38883061 |
7 | 37.3736945477734 | 126.666843295097 | 2.9341008 | 41.3888289 | 2.93409994 | 41.38882791 |
8 | 37.3736942813316 | 126.666846312582 | 2.9341035 | 41.3888286 | 2.93410264 | 41.38882761 |
9 | 37.3736916169143 | 126.666849330067 | 2.9341061 | 41.3888255 | 2.93410524 | 41.38882451 |
10 | 37.3736886860552 | 126.666852682828 | 2.9341089 | 41.3888222 | 2.93410804 | 41.38882121 |
11 | 37.3736865545213 | 126.666857041418 | 2.9341127 | 41.3888197 | 2.93411184 | 41.38881871 |
12 | 37.3736838901037 | 126.666860058903 | 2.9341153 | 41.3888167 | 2.93411444 | 41.38881571 |
13 | 37.3736809592443 | 126.666861400008 | 2.9341165 | 41.3888134 | 2.93411564 | 41.38881241 |
14 | 37.3736790941518 | 126.666864417493 | 2.9341191 | 41.3888113 | 2.93411824 | 41.38881031 |
15 | 37.3736756304086 | 126.666866764426 | 2.9341211 | 41.3888074 | 2.93412024 | 41.38880641 |
16 | 37.3736732324325 | 126.666869781911 | 2.9341237 | 41.3888047 | 2.93412284 | 41.38880371 |
17 | 37.3736697686890 | 126.666871793568 | 2.9341253 | 41.3888008 | 2.93412444 | 41.38879981 |
18 | 37.3736671042709 | 126.666872128844 | 2.9341256 | 41.3887978 | 2.93412474 | 41.38879681 |
19 | 37.3736631076435 | 126.666875146329 | 2.9341281 | 41.3887933 | 2.93412724 | 41.38879231 |
20 | 37.3736604432251 | 126.666877493262 | 2.9341301 | 41.3887903 | 2.93412924 | 41.38878931 |
………… | ||||||
70 | 37.3734784632248 | 126.666935160756 | 2.9341762 | 41.3885871 | 2.93417534 | 41.38858611 |
71 | 37.3734763316849 | 126.666937507688 | 2.9341782 | 41.3885847 | 2.93417734 | 41.38858371 |
72 | 37.3734752659149 | 126.666940525174 | 2.9341809 | 41.3885835 | 2.93418004 | 41.38858251 |
73 | 37.3734736672599 | 126.666942536830 | 2.9341826 | 41.3885816 | 2.93418174 | 41.38858061 |
74 | 37.3734726014898 | 126.666946224868 | 2.9341859 | 41.3885804 | 2.93418504 | 41.38857941 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valenzuela, A.; Choi, J.B.; Ortiz, R.; Kang, B.; Kim, M.; Kang, T. Development of Mobile App to Enable Local Update on Mapping API: Construction Sites Monitoring through Digital Twin. Electronics 2023, 12, 4738. https://doi.org/10.3390/electronics12234738
Valenzuela A, Choi JB, Ortiz R, Kang B, Kim M, Kang T. Development of Mobile App to Enable Local Update on Mapping API: Construction Sites Monitoring through Digital Twin. Electronics. 2023; 12(23):4738. https://doi.org/10.3390/electronics12234738
Chicago/Turabian StyleValenzuela, Alfredo, Jongseong Brad Choi, Ricardo Ortiz, Byungkon Kang, Michael Kim, and Taewook Kang. 2023. "Development of Mobile App to Enable Local Update on Mapping API: Construction Sites Monitoring through Digital Twin" Electronics 12, no. 23: 4738. https://doi.org/10.3390/electronics12234738
APA StyleValenzuela, A., Choi, J. B., Ortiz, R., Kang, B., Kim, M., & Kang, T. (2023). Development of Mobile App to Enable Local Update on Mapping API: Construction Sites Monitoring through Digital Twin. Electronics, 12(23), 4738. https://doi.org/10.3390/electronics12234738