Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution
Abstract
:1. Introduction
- We propose a dual-graph convolution module, which can make full use of the geometric and semantic information of point clouds, capture the internal relationship between point clouds, and realize the effective extraction of local features of point clouds.
- We propose a channel attention module and a spatial self-attention module to enhance the network’s ability to extract global information in both spatial and channel dimensions, thereby optimizing the final segmentation results.
- We apply the proposed methodology to conduct quantitative experiments and various ablation studies on the challenging Stanford Large-Scale 3D Indoor Space (S3DIS) dataset. The experimental results verify the rationality and effectiveness of our method.
2. Methods
2.1. Network Structure Design
2.2. Dual Graph Convolution Module
- (1)
- Construction of Dual Graph Structure
- (2)
- Extraction of Local Features
2.3. Channel Attention Module
2.4. Spatial Self-Attention Module
3. Experiments and Discussions
3.1. Experimental Dataset
3.2. Network Parameter Setting
3.3. Contrast Experiment
3.4. Ablation Study
3.5. Selection of Pooling Methods
3.6. K-Nearest Neighbor Size Setting in Dual Graph Convolution
3.7. Dual Graph Convolutional Module Layer Number Test
3.8. Robustness Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, X.-Y.; Chen, Z.-D.; Han, D.-D.; Zhang, Y.-L.; Xia, H.; Sun, H.-B. Laser fabrication of graphene-based supercapacitors. Photonics Res. 2020, 8, 577–588. [Google Scholar] [CrossRef]
- Choe, J.; Park, C.; Rameau, F.; Park, J.; Kweon, I.S. (Eds.) Pointmixer: Mlp-mixer for point cloud understanding. In Proceedings of the Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022; Proceedings, Part XXVII. Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Li, M.; Xie, Y.; Ma, L. Paying attention for adjacent areas: Learning discriminative features for large-scale 3D scene segmentation. Pattern Recognit. 2022, 129, 108722. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Song, S.; Tang, P.; Chen, J.; Hu, J.; Gong, Y. MFFRand: Semantic Segmentation of Point Clouds Based on Multi-Scale Feature Fusion and Multi-Loss Supervision. Electronics 2022, 11, 3626. [Google Scholar] [CrossRef]
- Shuai, H.; Xu, X.; Liu, Q. Backward Attentive Fusing Network With Local Aggregation Classifier for 3D Point Cloud Semantic Segmentation. IEEE Trans. Image Process. 2021, 30, 4973–4984. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Dong, Q.; Zhu, F.; Lv, Y.; Ye, P.; Wang, F.-Y. SCF-Net: Learning Spatial Contextual Features for Large-Scale Point Cloud Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 14499–14508. [Google Scholar]
- Zhang, J.; Li, X.; Zhao, X.; Zhang, Z. LLGF-Net: Learning Local and Global Feature Fusion for 3D Point Cloud Semantic Segmentation. Electronics 2022, 11, 2191. [Google Scholar] [CrossRef]
- Ahn, P.; Yang, J.; Yi, E.; Lee, C.; Kim, J. Projection-based point convolution for efficient point cloud segmentation. IEEE Access 2022, 10, 15348–15358. [Google Scholar] [CrossRef]
- Kellner, M.; Stahl, B.; Reiterer, A. Fused projection-based point cloud segmentation. Sensors 2022, 22, 1139. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Yin, X.; Fathi, A.; Ross, D.; Brewington, B.; Funkhouser, T.; Pantofaru, C. (Eds.) Virtual multi-view fusion for 3d semantic segmentation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXIV 16. Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Du, J.; Huang, X.; Xing, M.; Zhang, T. Improved 3D Semantic Segmentation Model Based on RGB Image and LiDAR Point Cloud Fusion for Automantic Driving. Int. J. Automot. Technol. 2023, 24, 787–797. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, X.; Zhao, S.; Yue, X.; Keutzer, K. (Eds.) Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Meng, H.-Y.; Gao, L.; Lai, Y.-K.; Manocha, D. (Eds.) Vv-net: Voxel vae net with group convolutions for point cloud segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Zhao, L.; Xu, S.; Liu, L.; Ming, D.; Tao, W. SVASeg: Sparse Voxel-Based Attention for 3D LiDAR Point Cloud Semantic Segmentation. Remote Sens. 2022, 14, 4471. [Google Scholar] [CrossRef]
- Huang, M.; Wei, P.; Liu, X. An efficient encoding voxel-based segmentation (EVBS) algorithm based on fast adjacent voxel search for point cloud plane segmentation. Remote Sens. 2019, 11, 2727. [Google Scholar] [CrossRef]
- Fang, Z.; Xiong, B.; Liu, F. Sparse point-voxel aggregation network for efficient point cloud semantic segmentation. IET Comput. Vis. 2022, 16, 644–654. [Google Scholar] [CrossRef]
- Park, J.; Kim, C.; Kim, S.; Jo, K. PCSCNet: Fast 3D semantic segmentation of LiDAR point cloud for autonomous car using point convolution and sparse convolution network. Expert Syst. Appl. 2023, 212, 118815. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. (Eds.) Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Du, T.; Ni, J.; Wang, D. Fast Context-Awareness Encoder for LiDAR Point Semantic Segmentation. Electronics 2023, 12, 3228. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef]
- Wang, G.; Wang, L.; Wu, S.; Zu, S.; Song, B. Semantic Segmentation of Transmission Corridor 3D Point Clouds Based on CA-PointNet++. Electronics 2023, 12, 2829. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2017; p. 30. [Google Scholar]
- Zhai, Z.; Zhang, X.; Yao, L. Multi-scale dynamic graph convolution network for point clouds classification. IEEE Access 2020, 8, 65591–65598. [Google Scholar] [CrossRef]
- Zhang, K.; Hao, M.; Wang, J.; Chen, X.; Leng, Y.; de Silva, C.W.; Fu, C. (Eds.) Linked dynamic graph cnn: Learning through point cloud by linking hierarchical features. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China, 26–28 November 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. (Eds.) Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. (Eds.) Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. (Eds.) ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. (Eds.) Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. (Eds.) Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. (Eds.) 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Peyghambarzadeh, S.M.; Azizmalayeri, F.; Khotanlou, H.; Salarpour, A. Point-PlaneNet: Plane kernel based convolutional neural network for point clouds analysis. Digit. Signal Process. 2020, 98, 102633. [Google Scholar] [CrossRef]
- Luo, N.; Yu, H.; Huo, Z.; Liu, J.; Wang, Q.; Xu, Y.; Gao, Y. KVGCN: A KNN searching and VLAD combined graph convolutional network for point cloud segmentation. Remote Sens. 2021, 13, 1003. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, Y.; Zhao, J.; Yao, R.; Zhang, M. Point cloud recognition based on lightweight embeddable attention module. Neurocomputing 2022, 472, 138–148. [Google Scholar] [CrossRef]
Methods | mIoU/% | OA/% |
---|---|---|
PointNet [19] | 47.6 | 78.6 |
PointNet++ [23] | 54.5 | 81.0 |
DGCNN [21] | 56.1 | 84.1 |
Point-PlaneNet [32] | 54.8 | 83.9 |
KVGCN [33] | 60.9 | 87.4 |
DBAN [34] | 60.9 | 86.1 |
DualGraphCNN | 63.2 | 87.8 |
Methods | mIoU | Ceil | Floor | Wall | Beam | Col | Wind | Door | Table | Chair | Sofa | Book | Board | Clut |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PointNet [19] | 41.1 | 88.8 | 97.3 | 69.8 | 0.1 | 3.9 | 46.3 | 10.8 | 58.9 | 52.6 | 5.9 | 40.3 | 26.4 | 33.2 |
PointNet++ [23] | 50.0 | 90.8 | 96.5 | 74.1 | 0.0 | 5.8 | 43.6 | 25.4 | 76.9 | 69.2 | 55.6 | 21.5 | 49.3 | 41.9 |
DGCNN [21] | 47.1 | 92.4 | 97.5 | 76.0 | 0.4 | 12.0 | 51.6 | 27.0 | 68.6 | 64.9 | 43.8 | 7.7 | 29.4 | 40.8 |
DualGraphCNN | 53.6 | 94.5 | 98.1 | 79.4 | 0.2 | 19.8 | 50.3 | 29.3 | 72.3 | 67.4 | 59.7 | 20.1 | 46.7 | 49.5 |
Methods | DualGrap | SSA | CA | mIoU/% | OA/% |
---|---|---|---|---|---|
1 | × | × | × | 70.3 | 88.7 |
2 | √ | × | × | 74.1 | 89.9 |
3 | √ | √ | × | 75.4 | 90.3 |
4 | √ | × | √ | 74.7 | 90.1 |
5 | √ | √ | √ | 76.1 | 90.6 |
Methods | Max Pooling | Average Pooling | Attention Pooling | mIoU/% | OA/% |
---|---|---|---|---|---|
A | √ | × | × | 75.1 | 90.1 |
B | × | √ | × | 74.7 | 90.0 |
C | × | × | √ | 75.3 | 90.3 |
D | √ | √ | × | 75.6 | 90.3 |
E | √ | √ | √ | 76.1 | 90.6 |
Combination | Kd | Ks | mIoU/% | OA/% |
---|---|---|---|---|
1 | 20 | 0 | 73.6 | 89.7 |
2 | 0 | 20 | 73.1 | 89.5 |
3 | 10 | 10 | 72.5 | 89.2 |
4 | 20 | 10 | 75.4 | 90.3 |
5 | 10 | 20 | 75.1 | 90.2 |
6 | 20 | 20 | 76.1 | 90.6 |
7 | 25 | 20 | 75.6 | 90.3 |
8 | 20 | 25 | 75.5 | 90.3 |
9 | 25 | 25 | 75.0 | 90.1 |
Layer Number | mIoU/% | OA/% |
---|---|---|
1 | 69.5 | 88.4 |
2 | 73.8 | 89.8 |
3 | 76.1 | 90.6 |
4 | 75.4 | 90.3 |
5 | 75.3 | 90.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wen, Y.; Jiao, S.; Zhao, R.; Han, X.; He, L. Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution. Electronics 2023, 12, 4991. https://doi.org/10.3390/electronics12244991
Yang X, Wen Y, Jiao S, Zhao R, Han X, He L. Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution. Electronics. 2023; 12(24):4991. https://doi.org/10.3390/electronics12244991
Chicago/Turabian StyleYang, Xiaowen, Yanghui Wen, Shichao Jiao, Rong Zhao, Xie Han, and Ligang He. 2023. "Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution" Electronics 12, no. 24: 4991. https://doi.org/10.3390/electronics12244991
APA StyleYang, X., Wen, Y., Jiao, S., Zhao, R., Han, X., & He, L. (2023). Point Cloud Segmentation Network Based on Attention Mechanism and Dual Graph Convolution. Electronics, 12(24), 4991. https://doi.org/10.3390/electronics12244991