Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study
Abstract
:1. Introduction
2. Problem Formulation
2.1. Case Study Description
- : bidirectional power exchanged between the MG and the distribution grid. Therefore, it is assumed that if , the MG consumes power from the distribution grid, and if , MG injects power into the distribution grid.
- : power produced by the PV system.
- : considered the charging power of the ESS if , and the discharging power if .
- : aggregated power demand of the loads.
2.2. Formulation of the Optimization Problem
2.3. MDP—Markov Decision Process Model Formulation
2.3.1. State Space
2.3.2. Action Space
2.3.3. Reward Function
3. Energy Management Algorithms
3.1. Reinforcement Learning
Algorithm 1: Q-learning-based energy management algorithm |
|
3.2. Imitation Learning
Algorithm 2: Imitation-Q-learning-based energy management algorithm |
|
4. Results and Discussion
4.1. Simulation Data and Set-Up Parameters
4.2. Simulation Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Speer, B.; Miller, M.; Schaffer, W.; Gueran, L.; Reuter, A.; Jang, B.; Widegren, K. Role of Smart Grids in Integrating Renewable Energy; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2015. [Google Scholar]
- Farrokhifar, M.; Aghdam, F.H.; Alahyari, A.; Monavari, A.; Safari, A. Optimal energy management and sizing of renewable energy and battery systems in residential sectors via a stochastic MILP model. Electr. Power Syst. Res. 2020, 187, 106483. [Google Scholar] [CrossRef]
- Ahmad, M. Operation and Control of Renewable Energy Systems; John Wiley & Sons: Chennai, India, 2018. [Google Scholar]
- Levent, T.; Preux, P.; Le Pennec, E.; Badosa, J.; Henri, G.; Bonnassieux, Y. Energy management for microgrids: A reinforcement learning approach. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) 2019, Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2019, 222, 1033–1055. [Google Scholar] [CrossRef]
- Novickij, I.; Joós, G. Model predictive control based approach for microgrid energy management. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE) 2019, Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4. [Google Scholar]
- Wen, X.; Abbes, D.; Francois, B. Stochastic optimization for security-constrained day-ahead operational planning under pv production uncertainties: Reduction analysis of operating economic costs and carbon emissions. IEEE Access 2021, 9, 97039–97052. [Google Scholar] [CrossRef]
- Sun, L.; Jin, Y.; Shen, J.; You, F. Sustainable residential micro-cogeneration system based on a fuel cell using dynamic programming-based economic day-ahead scheduling. ACS Sustain. Chem. Eng. 2021, 9, 3258–3266. [Google Scholar] [CrossRef]
- Shadaei, M.; Moazeni, F.; Khazaei, J. Probabilistic Microgrid Economic Dispatch via Economic Model Predictive Control Considering Weather and Load Data Uncertainty. In Proceedings of the 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 6–9 June 2023; pp. 1–6. [Google Scholar]
- Ji, Y.; Wang, J.; Xu, J.; Fang, X.; Zhang, H. Real-time energy management of a microgrid using deep reinforcement learning. Energies 2019, 12, 2291. [Google Scholar] [CrossRef]
- Tsividis, P.A.; Loula, J.; Burga, J.; Foss, N.; Campero, A.; Pouncy, T.; Tenenbaum, J.B. Human-level reinforcement learning through theory-based modeling, exploration, and planning. arXiv 2021, arXiv:2107.12544. [Google Scholar]
- Mbuwir, B.V.; Ruelens, F.; Spiessens, F.; Deconinck, G. Battery energy management in a microgrid using batch reinforcement learning. Energies 2017, 10, 1846. [Google Scholar] [CrossRef]
- Lee, S.; Choi, D.H. Reinforcement learning-based energy management of smart home with rooftop solar photovoltaic system, energy storage system, and home appliances. Sensors 2019, 19, 3937. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lim, H. Reinforcement learning based energy management algorithm for smart energy buildings. Energies 2018, 11, 2010. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Wang, X.; Chen, S. Deep Reinforcement Learning for Microgrid Operation Optimization: A Review. In Proceedings of the 2023 8th Asia Conference on Power and Electrical Engineering (ACPEE), Tianjin, China, 14–16 April 2023; pp. 2059–2065. [Google Scholar]
- Nakabi, T.A.; Toivanen, P. Deep reinforcement learning for energy management in a microgrid with flexible demand. Sustain. Energy Grids Netw. 2021, 25, 100413. [Google Scholar] [CrossRef]
- Attia, A.; Dayan, S. Global overview of imitation learning. arXiv 2018, arXiv:1801.06503. [Google Scholar]
- Billard, A.; Grollman, D. Imitation learning in robots. In Encyclopedia of the Sciences of Learning; Springer: Boston, MA, USA, 2012; pp. 1494–1496. [Google Scholar]
- Hua, J.; Zeng, L.; Li, G.; Ju, Z. Learning for a robot: Deep reinforcement learning, imitation learning, transfer learning. Sensors 2021, 21, 1278. [Google Scholar] [CrossRef] [PubMed]
- Stanford University. Available online: https://web.stanford.edu/class/cs237b/pdfs/lecture/cs237b_lecture_12.pdf (accessed on 20 September 2023).
- Gao, S.; Xiang, C.; Yu, M.; Tan, K.T.; Lee, T.H. Online optimal power scheduling of a microgrid via imitation learning. IEEE Trans. Smart Grid 2021, 13, 861–876. [Google Scholar] [CrossRef]
- Dey, S.; Marzullo, T.; Henze, G. Inverse reinforcement learning control for building energy management. Energy Build. 2023, 286, 112941. [Google Scholar] [CrossRef]
- Reddy, S.; Dragan, A.D.; Levine, S. SQIL: Imitation learning via reinforcement learning with sparse rewards. arXiv 2019, arXiv:1905.11108. [Google Scholar]
- Gouvy, N.; Nassar, J.; Lefévère, V. Transforming the Catholic University of Lille Campus into a Smart Grid. In Organizing Smart Buildings and Cities: Promoting Innovation and Participation; Magnaghi, E., Flambard, V., Mancini, D., Jacques, J., Gouvy, N., Eds.; Springer: Cham, Switzerland, 2021; Volume 36, pp. 177–184. [Google Scholar]
- Live Tree | Université Catholique de Lille. Available online: https://www.univ-catholille.fr/en/live-tree (accessed on 7 October 2023).
- Eaton. Available online: https://www.eaton.com/content/dam/eaton/products/energy-storage/catholic-university-of-lille---success-story---images/Eaton-CSS-Creation-Lille-English_EN_EN.pdf (accessed on 7 October 2023).
- ebalanceplus. Available online: https://www.ebalanceplus.eu/yncrea-hauts-de-france-and-icl (accessed on 7 October 2023).
- Georgious, R.; Refaat, R.; Garcia, J.; Daoud, A.A. Review on energy storage systems in microgrids. Electronics 2021, 10, 2134. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018; Volume 3, p. 360. [Google Scholar]
- Stephant, M. Optimisation de L’autoconsommation Dans Une Communauté Énergétique Locale via Une Blockchain. Ph.D. Thesis, HESAM, Paris, France, 2021. [Google Scholar]
- Weatherspark. Available online: https://weatherspark.com/h/d/49799/2020/2/17/Historical-Weather-on-Monday-February-17-2020-in-Lille-France (accessed on 8 December 2023).
Variable | Value | |
---|---|---|
Lille Catholic University smart grid demonstrator parameters | Max PV power | |
ESS capacity | ||
Max rate of charge Max rate of discharge Max ESS energy level Min ESS energy level | ||
Q-Learning | Number of iterations | N = 100,000 |
Learning rate Discount factor Epsilon | α = 0.1 = 0.99 | |
Imitation-Q-Learning | Number of iterations | N = 100 |
Learning rate | α = 0.1 | |
Discount factor | = 0.99 |
Algorithm | N-Iterations | Simulation Time |
---|---|---|
Q-learning | 100,000 | 83.96 min |
Imitation-Q-Learning LP | 100 - | 58 s 1.6 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swibki, T.; Ben Salem, I.; Kraiem, Y.; Abbes, D.; El Amraoui, L. Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study. Electronics 2023, 12, 5048. https://doi.org/10.3390/electronics12245048
Swibki T, Ben Salem I, Kraiem Y, Abbes D, El Amraoui L. Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study. Electronics. 2023; 12(24):5048. https://doi.org/10.3390/electronics12245048
Chicago/Turabian StyleSwibki, Taheni, Ines Ben Salem, Youssef Kraiem, Dhaker Abbes, and Lilia El Amraoui. 2023. "Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study" Electronics 12, no. 24: 5048. https://doi.org/10.3390/electronics12245048
APA StyleSwibki, T., Ben Salem, I., Kraiem, Y., Abbes, D., & El Amraoui, L. (2023). Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study. Electronics, 12(24), 5048. https://doi.org/10.3390/electronics12245048