Neural Adaptive Impedance Control for Force Tracking in Uncertain Environment
Abstract
:1. Introduction
- (1)
- A kind of adaptive impedance control method based on the neural network is proposed. This method is simple and easy to implement. Although some modern control approaches have also been proposed, their design procedures are more difficult or complex.
- (2)
- The impedance parameters of the controller are directly adjusted online, which improves the performance of the controller.
- (3)
- The proposed method can be deployed without any data collection or training process. In addition, its simple structure does not require a large amount of computing resources.
2. Preliminaries
3. Neural Adaptive Impedance Control
3.1. Traditional Adaptive Impedance Control Law
3.2. Neural Adaptive Impedance Control
4. Simulation Studies
4.1. Flat Surface Tracking
4.2. Slope Surface Tracking
5. Experimental Studies
5.1. Friction Compensation
5.2. Real-World Experiment
5.2.1. Fixed Contact Point Force Tracking
5.2.2. Force Tracking under an Unknown Environment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, M.; Wojtusch, J.; Beckerle, P.; von Stryk, O. An introductory review of active compliant control. Robot. Auton. Syst. 2019, 119, 185–200. [Google Scholar] [CrossRef]
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. J. Dyn. Syst. Meas. Control 1985, 107, 1–7. [Google Scholar] [CrossRef]
- De Luca, A.; Albu-Schaffer, A.; Haddadin, S.; Hirzinger, G. Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 1623–1630. [Google Scholar]
- Huang, S.; Gao, M.; Liu, L.; Chen, J.; Zhang, J. Collision Detection for Cobots: A Back-Input Compensation Approach. IEEE/ASME Trans. Mechatron. 2022, 27, 1–12. [Google Scholar] [CrossRef]
- Capurso, M.; Ardakani, M.M.G.; Johansson, R.; Robertsson, A.; Rocco, P. Sensorless kinesthetic teaching of robotic manipulators assisted by observer-based force control. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May 2017–3 June 2017; pp. 945–950. [Google Scholar]
- Armstrong-Hélouvry, B.; Dupont, P.; De Wit, C.C. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 1994, 30, 1083–1138. [Google Scholar] [CrossRef]
- Canudas de Wit, C.; Olsson, H.; Astrom, K.; Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control 1995, 40, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Freidovich, L.; Robertsson, A.; Shiriaev, A.; Johansson, R. LuGre-Model-Based Friction Compensation. IEEE Trans. Control Syst. Technol. 2010, 18, 194–200. [Google Scholar] [CrossRef]
- Makkar, C.; Dixon, W.; Sawyer, W.; Hu, G. A new continuously differentiable friction model for control systems design. In Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 24–28 July 2005; pp. 600–605. [Google Scholar] [CrossRef]
- Yao, J.; Deng, W.; Jiao, Z. Adaptive Control of Hydraulic Actuators With LuGre Model-Based Friction Compensation. IEEE Trans. Ind. Electron. 2015, 62, 6469–6477. [Google Scholar] [CrossRef]
- Albu-Schäffer, A.; Haddadin, S.; Ott, C.; Stemmer, A.; Wimböck, T.; Hirzinger, G. The DLR lightweight robot: Design and control concepts for robots in human environments. Ind. Robot. Int. J. 2007, 34, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef] [Green Version]
- Muratore, L.; Laurenzi, A.; Tsagarakis, N.G. A self-modulated impedance multimodal interaction framework for human-robot collaboration. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4998–5004. [Google Scholar]
- Duan, J.; Gan, Y.; Chen, M.; Dai, X. Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 2018, 102, 54–65. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, Y.; Liu, Y.; Jin, M.; Liu, H. Adaptive object impedance control of dual-arm cooperative humanoid manipulators. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2014; pp. 3333–3339. [Google Scholar]
- Jung, S.; Hsia, T.; Bonitz, R. Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 2004, 12, 474–483. [Google Scholar] [CrossRef]
- Liu, L.; Leonhardt, S.; Ngo, C.; Misgeld, B.J. Impedance-controlled variable stiffness actuator for lower limb robot applications. IEEE Trans. Autom. Sci. Eng. 2019, 17, 991–1004. [Google Scholar] [CrossRef]
- Li, G.; Yu, J.; Chen, X. Adaptive Fuzzy Neural Network Command Filtered Impedance Control of Constrained Robotic Manipulators With Disturbance Observer. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Hsia, T. Neural network impedance force control of robot manipulator. IEEE Trans. Ind. Electron. 1998, 45, 451–461. [Google Scholar] [CrossRef] [Green Version]
- Zhai, A.; Zhang, H.; Wang, J.; Lu, G.; Li, J.; Chen, S. Adaptive neural synchronized impedance control for cooperative manipulators processing under uncertain environments. Robot. Comput.-Integr. Manuf. 2022, 75, 102291. [Google Scholar] [CrossRef]
- Cong, S.; Liang, Y. PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems. IEEE Trans. Ind. Electron. 2009, 56, 3872–3879. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, L.; Kuang, Z.; Tomizuka, M. Learning Variable Impedance Control via Inverse Reinforcement Learning for Force-Related Tasks. IEEE Robot. Autom. Lett. 2021, 6, 2225–2232. [Google Scholar] [CrossRef]
- Fu, Z.; Pan, J.; Spyrakos-Papastavridis, E.; Lin, Y.H.; Zhou, X.; Chen, X.; Dai, J.S. A Lie-Theory-Based Dynamic Parameter Identification Methodology for Serial Manipulators. IEEE/ASME Trans. Mechatron. 2021, 26, 2688–2699. [Google Scholar] [CrossRef]
i | RMSE | RMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 41.63 | 17.97 | 0.2610 | 30.52 | 1.259 | 29.95 | 16.98 | 0.2715 | 5.811 | 0.8796 |
2 | 5.729 | 5.474 | 0.0359 | 22.27 | 0.2353 | 2.949 | 4.469 | 0.1965 | 27.48 | 0.438 |
3 | 0.5415 | 0.6825 | 0.0049 | 3.773 | 0.0721 | 1.183 | 1.382 | 0.004 | 3.465 | 0.1905 |
4 | 2.254 | 2.923 | 0.0660 | 3.208 | 0.0439 | 3.111 | 3.916 | 0.036 | 2.984 | 0.0714 |
5 | 2.63 | 3.590 | 0.0069 | 2.837 | 0.0899 | 2.635 | 2.894 | 0.010 | 2.846 | 0.0636 |
6 | 1.97 | 2.431 | 0.0170 | 3.846 | 0.0608 | 1.86 | 2.429 | 0.018 | 4.009 | 0.0649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Ye, C.; Yin, Z.; Lin, W. Neural Adaptive Impedance Control for Force Tracking in Uncertain Environment. Electronics 2023, 12, 640. https://doi.org/10.3390/electronics12030640
An H, Ye C, Yin Z, Lin W. Neural Adaptive Impedance Control for Force Tracking in Uncertain Environment. Electronics. 2023; 12(3):640. https://doi.org/10.3390/electronics12030640
Chicago/Turabian StyleAn, Hao, Chao Ye, Zikang Yin, and Weiyang Lin. 2023. "Neural Adaptive Impedance Control for Force Tracking in Uncertain Environment" Electronics 12, no. 3: 640. https://doi.org/10.3390/electronics12030640
APA StyleAn, H., Ye, C., Yin, Z., & Lin, W. (2023). Neural Adaptive Impedance Control for Force Tracking in Uncertain Environment. Electronics, 12(3), 640. https://doi.org/10.3390/electronics12030640