Preventing Keratoconus through Eye Rubbing Activity Detection: A Machine Learning Approach
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Keratoconus Diagnosis through Artificial Intelligence Techniques
1.3. Face Touching Detection
2. Materials and Methods
2.1. High-Level Architecture of the Proposed System
2.2. Eye Rubbing Detection through Machine Learning
2.2.1. Experimental Protocol and Evaluation Measures
2.2.2. Data Collection
2.2.3. Features Extraction
3. Results
4. Discussion
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Totan, Y.; Hepşen, I.F.; Çekiç, O.; Gündüz, A.; Aydın, E. Incidence of keratoconus in subjects with vernal keratoconjunctivitis:: A videokeratographic study. Ophthalmology 2001, 108, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.C.; Gaster, R.N. Keratoconus. In Ocular Disease; Elsevier: Amsterdam, The Netherlands, 2010; pp. 42–48. [Google Scholar] [CrossRef]
- Ferrari, G.; Rama, P. The keratoconus enigma: A review with emphasis on pathogenesis. Ocul. Surf. 2020, 18, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Heydarian, S.; Hooshmand, E.; Saatchi, M.; Yekta, A.A.; Aghamirsalim, M.; Valadkhan, M.; Mortazavi, M.; Hashemi, A.; Khabazkhoob, M. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2020, 39, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Najmi, H.; Mobarki, Y.; Mania, K.; AlTowairqi, B.; Basehi, M.; Mahfouz, M.S.; Elmahdy, M. The correlation between keratoconus and eye rubbing: A review. Int. J. Ophthalmol. 2019, 12, 1775–1781. [Google Scholar] [CrossRef]
- Sahebjada, S.; Al-Mahrouqi, H.H.; Moshegov, S.; Panchatcharam, S.M.; Chan, E.; Daniell, M.; Baird, P.N. Eye rubbing in the aetiology of keratoconus: A systematic review and meta-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 2057–2067. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. J. Med. Syst. 2016, 40, 286. [Google Scholar] [CrossRef]
- Saba, T. Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. J. Infect. Public Health 2020, 13, 1274–1289. [Google Scholar] [CrossRef]
- Michelin, A.M.; Korres, G.; Ba’Ara, S.; Assadi, H.; Alsuradi, H.; Sayegh, R.R.; Argyros, A.; Eid, M. FaceGuard: A Wearable System To Avoid Face Touching. Front. Robot. AI 2021, 8, 612392. [Google Scholar] [CrossRef]
- Issarti, I.; Consejo, A.; Jiménez-García, M.; Hershko, S.; Koppen, C.; Rozema, J.J. Computer aided diagnosis for suspect keratoconus detection. Comput. Biol. Med. 2019, 109, 33–42. [Google Scholar] [CrossRef]
- Arbelaez, M.C.; Versaci, F.; Vestri, G.; Barboni, P.; Savini, G. Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data. Ophthalmology 2012, 119, 2231–2238. [Google Scholar] [CrossRef]
- Ruiz Hidalgo, I.; Rodriguez, P.; Rozema, J.J.; Ní Dhubhghaill, S.; Zakaria, N.; Tassignon, M.-J.; Koppen, C. Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography. Cornea 2016, 35, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Yousefi, E.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Asbell, P. Keratoconus severity identification using unsupervised machine learning. PLoS ONE 2018, 13, e0205998. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Takahashi, H.; Hayashi, T.; Tampo, H.; Inoda, S.; Arai, Y.; Tabuchi, H.; Asbell, P. Predicting the likelihood of need for future keratoplasty intervention using artificial intelligence. Ocul. Surf. 2020, 18, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Lavric, A.; Valentin, P. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks. Comput. Intell. Neurosci. 2019, 2019, 8162567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallett, N.; Yi, K.; Dick, J.; Hodge, C.; Sutton, G.; Wang, Y.G.; You, J. Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Lavric, A.; Popa, V.; Takahashi, H.; Yousefi, S. Detecting Keratoconus From Corneal Imaging Data Using Machine Learning. IEEE Access 2020, 8, 149113–149121. [Google Scholar] [CrossRef]
- Velázquez-Blázquez, J.S.; Bolarín, J.M.; Cavas-Martínez, F.; Alió, J.L. EMKLAS: A New Automatic Scoring System for Early and Mild Keratoconus Detection. Transl. Vis. Sci. Technol. 2020, 9, 30. [Google Scholar] [CrossRef]
- Sudharsan, B.; Sundaram, D.; Breslin, J.G.; Ali, M.I. Avoid Touching Your Face: A Hand-to-face 3D Motion Dataset (COVID-away) and Trained Models for Smartwatches. In Proceedings of the 10th International Conference on the Internet of Things Companion, Malmi, Sweden, 6–9 October 2020. [Google Scholar] [CrossRef]
- Chen, X.A. FaceOff: Detecting Face Touching with a Wrist-Worn Accelerometer. arXiv 2008, arXiv:2008.01769. [Google Scholar]
- Bai, C.; Chen, Y.-P.; Wolach, A.; Anthony, L.; Mardini, M.T. Using Smartwatches to Detect Face Touching. Sensors 2021, 21, 6528. [Google Scholar] [CrossRef]
- Patel, S.; Madhani, H.; Garg, S.; Chauhan, M. An AI-Based Solution to Reduce Undesired Face-Touching as a Precautionary Measure for COVID-19. In Proceedings of the Computing Science, Communication and Security: Second International Conference, COMS2 2021, Gujarat, India, 6–7 February 2021; pp. 30–45. [Google Scholar] [CrossRef]
- Miller, E.; Banerjee, N.; Zhu, T. Smart homes that detect sneeze, cough, and face touching. Smart Health 2021, 19, 100170. [Google Scholar] [CrossRef]
- Eyiokur, F.I.; Ekenel, H.K.; Waibel, A. Unconstrained face mask and face-hand interaction datasets: Building a computer vision system to help prevent the transmission of COVID-19. Signal Image Video Process. 2022, 1–8. [Google Scholar] [CrossRef]
- Roy, M.; Seethi, V.D.R.; Bharti, P. CovidAlert—A Wristwatch-Based System to Alert Users from Face Touching. In Pervasive Computing Technologies for Healthcare. PH 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2022; pp. 489–504. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Bai, C.; Wolach, A.; Mardini, M.; Anthony, L. Detecting Face Touching with Dynamic Time Warping on Smartwatches: A Preliminary Study. In Proceedings of the Companion Publication of the 2021 International Conference on Multimodal Interaction, Montreal, QC, Canada, 18–22 October 2021; pp. 19–24. [Google Scholar] [CrossRef]
- Sehirli, E.; Alesmaeil, A. Detecting Face-Touch Hand Moves Using Smartwatch Inertial Sensors and Convolutional Neural Networks. Int. J. Intell. Syst. Appl. Eng. 2022, 10, 122–128. [Google Scholar] [CrossRef]
- Rizk, H.; Amano, T.; Yamaguchi, H.; Youssef, M. Smartwatch-Based Face-Touch Prediction Using Deep Representational Learning. In Mobile and Ubiquitous Systems: Computing, Networking and Services. MobiQuitous 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2022; pp. 493–499. [Google Scholar] [CrossRef]
- D’Aurizio, N.; Baldi, T.L.; Paolocci, G.; Prattichizzo, D. Preventing Undesired Face-Touches With Wearable Devices and Haptic Feedback. IEEE Access 2020, 8, 139033–139043. [Google Scholar] [CrossRef] [PubMed]
- InvenSense. MPU-6000 and MPU-6050 Product Specification, 8 2013. Rev. 3.4.; InvenSense: San Jose, CA, USA, 2013. [Google Scholar]
- Shoaib, M.; Bosch, S.; Scholten, H.; Havinga, P.J.M.; Incel, O.D. Towards detection of bad habits by fusing smartphone and smartwatch sensors. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St Louis, MO, USA, 23–27 March 2015; pp. 591–596. [Google Scholar] [CrossRef]
- Khan, A.M.; Tufail, A.; Khattak, A.M.; Laine, T.H. Activity Recognition on Smartphones via Sensor-Fusion and KDA-Based SVMs. Int. J. Distrib. Sens. Netw. 2014, 10, 503291. [Google Scholar] [CrossRef]
- Lu, H.; Yang, J.; Liu, Z.; Lane, N.D.; Choudhury, T.; Campbell, A.T. The Jigsaw Continuous Sensing Engine for Mobile Phone Applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, Zürich, Switzerland, 3–5 November 2010; pp. 71–84. [Google Scholar] [CrossRef]
- Ravi, N.L.M.; Dandekar, N.; Mysore, P. Activity recognition from accelerometer data. In Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence—Volume 3, IAAI’05, Pittsburgh, PA, USA, 9–13 July 2005; pp. 1541–1546. [Google Scholar]
- Pedregosa, F.; Varoquau, G.; Gramfo, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2012, 12, 2825–2830. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD ’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Livieris, I.E.; Kiriakidou, N.; Kanavos, A.; Vonitsanos, G.; Tampakas, V. Employing Constrained Neural Networks for Forecasting New Product’s Sales Increase. In Proceedings of the Artificial Intelligence Applications and Innovations: AIAI 2019 IFIP WG 12.5 International Workshops: MHDW and 5G-PINE 2019, Hersonissos, Crete, Greece, 24–26 May 2019; pp. 161–172. [Google Scholar] [CrossRef]
- Livieris, I.E.; Pintelas, E.; Kiriakidou, N.; Stavroyiannis, S. An Advanced Deep Learning Model for Short-Term Forecasting U.S. Natural Gas Price and Movement. In Proceedings of the Artificial Intelligence Applications and Innovations. AIAI 2020 IFIP WG 12.5 International Workshops: MHDW 2020 and 5G-PINE 2020, Neos Marmaras, Greece, 5–7 June 2020; pp. 165–176. [Google Scholar] [CrossRef]
- Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. A novel explainable image classification framework: Case study on skin cancer and plant disease prediction. Neural Comput. Appl. 2021, 33, 15171–15189. [Google Scholar] [CrossRef]
Acceleration | Rotation | |||||
---|---|---|---|---|---|---|
x | y | Z | x | y | z | |
min | −32,768 | −32,768 | −32,768 | −32,768 | −32,768 | −20,564 |
max | 32,767 | 32,767 | 32,767 | 32,767 | 32,767 | 32,767 |
mean | −328.3 | 330.8 | 37.7 | 94.6 | −6943.7 | 9115.7 |
stdev | 3184 | 6400.2 | 2952 | 4836.1 | 7942.1 | 6488.5 |
median | −293 | 211 | −12 | 48 | −3976 | 11,780 |
kurtosis | 24.5 | 14.5 | 23.6 | 3 | −0.3 | −1.1 |
skewness | −0.7 | 0.1 | 0.8 | 0.4 | 0.4 | −0.6 |
SVM | Actual | DT | Actual | ||||
---|---|---|---|---|---|---|---|
Random Activity | Eye Rubbing | Random Activity | Eye Rubbing | ||||
Predicted | Random activity | 2398 | 6 | Predicted | Random activity | 2328 | 8 |
Eye rubbing | 2 | 154 | Eye rubbing | 72 | 152 | ||
RF | Actual | XGBoost | Actual | ||||
Random activity | Eye rubbing | Random activity | Eye rubbing | ||||
Predicted | Random activity | 2399 | 7 | Predicted | Random activity | 2392 | 10 |
Eye rubbing | 1 | 153 | Eye rubbing | 8 | 158 |
Precision | Recall | F1 Score | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | DTs | RF | XGB | SVM | DTs | RF | XGB | SVM | DTs | RF | XGB | |
Random activity | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 |
Eye rubbing | 0.99 | 0.68 | 0.99 | 0.95 | 0.96 | 0.95 | 0.96 | 0.94 | 0.97 | 0.79 | 0.97 | 0.94 |
Accuracy | 0.99 | 0.96 | 0.99 | 0.99 | ||||||||
Macro avg | 0.99 | 0.84 | 1.00 | 0.97 | 0.98 | 0.96 | 0.98 | 0.97 | 0.99 | 0.89 | 0.99 | 0.97 |
Weighted avg | 1.00 | 0.98 | 1.00 | 0.99 | 1.00 | 0.97 | 1.00 | 0.99 | 1.00 | 0.97 | 1.00 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nokas, G.; Kotsilieris, T. Preventing Keratoconus through Eye Rubbing Activity Detection: A Machine Learning Approach. Electronics 2023, 12, 1028. https://doi.org/10.3390/electronics12041028
Nokas G, Kotsilieris T. Preventing Keratoconus through Eye Rubbing Activity Detection: A Machine Learning Approach. Electronics. 2023; 12(4):1028. https://doi.org/10.3390/electronics12041028
Chicago/Turabian StyleNokas, George, and Theodore Kotsilieris. 2023. "Preventing Keratoconus through Eye Rubbing Activity Detection: A Machine Learning Approach" Electronics 12, no. 4: 1028. https://doi.org/10.3390/electronics12041028
APA StyleNokas, G., & Kotsilieris, T. (2023). Preventing Keratoconus through Eye Rubbing Activity Detection: A Machine Learning Approach. Electronics, 12(4), 1028. https://doi.org/10.3390/electronics12041028