Transmission Line Voltage Calibration-Free Measurement Method
Abstract
:1. Introduction
2. Simulation Analysis
2.1. Five Capacitance Model Simulation Analysis
2.2. Principle of Floating Ground Sensor
2.3. Simulation Analysis of Coupling Capacitance to Ground
2.4. Electric Field Analysis
3. Calibration-Free Sensor Design
3.1. Stable Sensor Gain
3.2. Signal Shielding Device
4. Experimental Design and Analysis of Results
4.1. Design of the Floating Ground Measurement System
4.2. Construction of the Experimental Platform
4.3. Low Voltage Amplitude Accuracy Test
4.4. High Voltage Amplitude Accuracy Test
4.5. Phase Accuracy Test
4.6. Scene Adaptability Testing
5. Conclusions
- A novel voltage measurement scheme is proposed, and an equivalent theoretical model of dual capacitance is developed.
- The feasibility of the floating-ground measurement is verified using the equipotential and differential circuit methods. The maximum relative error of the voltage amplitude is 0.89%, and the phase difference is 0.68° for the voltage range (100 V–300 V) of the IFT voltage test. The maximum relative error of the voltage amplitude in the voltage range (600 V–10 kV) for the 50 Hz working frequency voltage test is 4.48%.
- The floating ground measurement method developed for this sensor has an amplitude accuracy error of only 0.88% after a specific height, a maximum difference of 0.52% for multiple line tests, and a stable sensor gain stability that allows for the self-calibration of the sensor.
- The sensor can be used in the future for voltage measurements on high-voltage transmission lines because of its high gain and the fact that it does not require consideration of insulation.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Q.; Sun, S.; Sima, S.; Luo, M. Research progress of advanced voltage and current sensing methods for smart grids. High Volt. Technol. 2019, 45, 349–367. [Google Scholar] [CrossRef]
- Gholizadeh-Roshanagh, R.; Zare, K. Electric power distribution system expansion planning considering cost elasticity of demand. IET Gener. Transm. Distrib. 2019, 13, 5229–5236. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, W.; Tan, X.; Yang, L.; Ren, Y.; Hu, Y. Design of Open-Ended Structure Wideband PCB Rogowski Coil Based on New Winding Method. Electronics 2022, 11, 381. [Google Scholar] [CrossRef]
- Ma, X.; Guo, Y.; Chen, X.; Xiang, Y.; Chen, K.-L. Impact of Coreless Current Transformer Position on Current Measurement. IEEE Trans. Instrum. Meas. 2019, 68, 3801–3809. [Google Scholar] [CrossRef]
- Crescentini, M.; Marchesi, M.; Romani, A.; Tartagni, M.; Traverso, P.A. A Broadband, On-Chip Sensor Based on Hall Effect for Current Measurements in Smart Power Circuits. IEEE Trans. Instrum. Meas. 2018, 67, 1470–1485. [Google Scholar] [CrossRef]
- Xuan, H.; Wen, C.; Song, Y.; Wei, X. Fault detection and analysis of capacitive components of capacitive voltage transformer. E3S Web Conf. 2020, 218, 01001. [Google Scholar] [CrossRef]
- Dong, W.; Sun, Z.; Gao, C.; He, Z.; Zha, K. Research and Experiment Verification of the Shielding Effect of a 1000kV Equipotential Shielding Capacitor Voltage Transformer in Consideration of Surface Leakage Current. IEEE Trans. Power Deliv. 2022, 1–8. [Google Scholar] [CrossRef]
- Tajdinian, M.; Allahbakhshi, M.; Behdani, B.; Behi, D.; Goodarzi, A. Probabilistic framework for vulnerability analysis of coupling capacitor voltage transformer to ferroresonance phenomenon. IET Sci. Meas. Technol. 2020, 14, 344–351. [Google Scholar] [CrossRef]
- Ding, X.; Yang, K.; Wang, W.; Liu, B.; Wang, X.; Zhang, J.; Li, D. Ferro-Resonance Analysis of Capacitor Voltage Transformer with Fast Saturation Damper. Energies 2022, 15, 2791. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Li, H.; Chen, Q. An online detection method for capacitor voltage transformer with excessive measurement error based on multi-source heterogeneous data fusion. Measurement 2022, 187, 110262. [Google Scholar] [CrossRef]
- Lu, P.; Wang, W.; Yu, Q.; Fan, B.; Liu, P.; Wang, F.; Zeng, X. Permanent Single-Line-to-Ground Fault Removal Method for Ferro-Resonance Avoidance in Neutral Ungrounded Distribution Network. IEEE Access 2022, 10, 53724–53734. [Google Scholar] [CrossRef]
- Yablokov, A.; Kabakov, P.; Gotovkina, E. Investigation of the Current Conversion Error of Rogowski Coil in a Wide Temperature Range. In Proceedings of the 2022 International Ural Conference on Electrical Power Engineering (UralCon), Magnitogorsk, Russia, 23–25 September 2022; pp. 307–312. [Google Scholar] [CrossRef]
- Rehman, A.U.; Lie, T.T.; Valles, B.; Tito, S.R. Event-detection algorithms for low sampling nonintrusive load monitoring systems basedon low complexity statisticalfeatures. IEEE Trans. Instrum. Meas. 2020, 69, 751–759. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, J.; Wang, Q.; Xiao, Q.; Zhang, R.; Ou, S.; Tao, Y. Simulation, Design, and Test of a Dual-Differential D-Dot Overvoltage Sensor Based on the Field-Circuit Coupling Method. Sensors 2019, 19, 3413. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, W.; Tan, X.; Chen, W.; Liang, S.; Suo, C. Research and Experiments on an External Miniaturized VFTO Measurement System. Sensors 2019, 20, 244. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Wang, Q.; Zhong, L.; Zhu, X. Research on transmission line voltage measurement method based on Gauss-Kronrod integral algorithm(Article). Meas. Sci. Technol. 2020, 31, 085103. [Google Scholar] [CrossRef]
- Xiao, D.P.; Xie, Y.T.; Ma, Q.C. Non-contact voltage measurement of three-phase overhead transmission line based on electric field inverse calculation. IET Gener. Transm. Distrib. 2018, 12, 2952–2957. [Google Scholar] [CrossRef]
- Epperson, D.; Rodriguez, R. Proving Unit for Non-Contact Voltage Measurement Systems. EP Patent EP3321697B1, 10 November 2017. [Google Scholar]
- Shenil, P.S.; George, B. Evaluation of a digitizer designed to inter-face a non-intrusive AC voltage measurement probe. IEEE Sens. J. 2020, 20, 5606–5614. [Google Scholar] [CrossRef]
- Steuer, R.; Ringsrud, P.A.; Worones, J.; Radda, P.; Schmitzer, C.K. Non-Contact Voltage Measurement System Using Reference Signal. U.S. Patent 10 139 435,B2, 27 November 2018. [Google Scholar]
- Schilder, M. Wideband Modelling of Capacitive Voltage Sensors for Open-Air Transmission Line Applications. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2002. [Google Scholar]
- Soto-Camacho, R.; Vergara-Limon, S.; Vargas-Treviño, M.A.D.; Paic, G.; López-Gómez, J.; Vargas-Treviño, M.; Gutierrez-Gutierrez, J.; Martínez-Solis, F.; Patiño-Salazar, M.E.; Velázquez-Aguilar, V.M. A Current Monitor System in High-Voltage Applications in a Range from Picoamps to Microamps. Electronics 2021, 10, 164. [Google Scholar] [CrossRef]
- JB/T 8734.2-2012; Polyvinyl Chloride Insulated Cables and Wires with Rated Voltage 450/750v and Below Part 2: Cables and Wires for Fixed Wiring. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2012.
Scheme | Reference | Method Used | Main Limitations | The Technical Gaps Solved in This Paper |
---|---|---|---|---|
CVT, VT | [1,6,7,8,9,10,11,12] | Series capacitor voltage division and Magnetic induction principle proportional voltage conversion | 1. Effective grounding is needed, and the insulation performance of the equipment is required. 2. Limited installation location. | 1. There is no need for grounding measurement, but it can ensure high measurement accuracy. 2. For various types of wires, the measurement can also ensure a higher measurement accuracy. 3. In the voltage test, there is no specific limit on the installation location. |
External Miniaturized VFTO Measurement System | [15] | Electric field coupling | 1.The measurement accuracy for a variety of wires is not high. 2. Effective grounding is needed, and the insulation performance of the equipment is required. | |
Non-Contact line voltage sensor | [17] | |||
Dual-slope FFT Magnitude | [19,20] | Electric field coupling andTwo frequency approach | ||
Body capacitance | [18] | Electric field coupling |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Insulation thickness ri | 0 mm | 0.5 mm | 1 mm | 1.5 mm | 2 mm | 2.5 mm | 3 mm | 3.5 mm | 4 mm |
Sensor gain | 330.25 | 322.78 | 318.41 | 315.59 | 310.70 | 308.66 | 305.93 | 302.48 | 300.76 |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Wire Diameter Sc | 0.5 mm | 1 mm | 1.5 mm | 2 mm | 2.5 mm | 3 mm | 3.5 mm | 4 mm | 4.5 mm |
Sensor gain | 359.71 | 347.92 | 330.25 | 330.25 | 321.63 | 314.46 | 309.02 | 301.66 | 296.71 |
Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Relative distance Di | 0 mm | 1 mm | 2 mm | 3 mm | 4 mm | 5 mm | 6 mm | 7 mm | 8 mm |
Sensor gain | 318.41 | 318.02 | 317.95 | 317.55 | 311.81 | 305.77 | 297.63 | 282.27 | 256.91 |
Parameters | Values |
---|---|
Length | 100 mm |
Internal insulation radius | 25 mm |
External insulation radius | 27 mm |
Capacitance value | 128 pF |
Actual Voltage (V) | Measured Voltage (mV) | Reconstructed Voltage for Maximum Error (V) | % Error |
---|---|---|---|
99.85 | 4.50 | 100.43 | 0.58 |
107.84 | 4.89 | 108.80 | 0.89 |
119.83 | 5.38 | 119.39 | −0.36 |
129.83 | 5.86 | 129.66 | −0.13 |
139.77 | 6.38 | 140.83 | 0.76 |
149.76 | 6.83 | 150.51 | 0.50 |
159.75 | 7.31 | 160.76 | 0.63 |
169.73 | 7.68 | 168.81 | −0.54 |
179.73 | 8.26 | 181.15 | 0.79 |
189.67 | 8.62 | 188.99 | −0.36 |
199.66 | 9.07 | 198.58 | −0.54 |
209.64 | 9.57 | 209.36 | −0.13 |
219.63 | 9.96 | 217.74 | −0.86 |
229.63 | 10.59 | 231.29 | 0.72 |
239.56 | 11.06 | 241.22 | 0.69 |
249.55 | 11.47 | 250.13 | 0.23 |
259.54 | 11.97 | 260.74 | 0.46 |
269.53 | 12.28 | 267.42 | −0.78 |
279.51 | 12.88 | 280.40 | 0.32 |
289.51 | 13.24 | 288.17 | −0.46 |
299.44 | 13.89 | 302.08 | 0.88 |
Actual Voltage(V) | Measured Voltage (mV) | Reconstructed Voltage (V) | % Error |
---|---|---|---|
674 | 32.67 | 704.68 | 4.55% |
872 | 42.37 | 912.84 | 4.68% |
1254 | 60.14 | 1294.17 | 3.20% |
1689 | 81.36 | 1749.53 | 3.58% |
2243 | 106.13 | 2281.08 | 1.70% |
2480 | 118.15 | 2539.02 | 2.38% |
2754 | 122.89 | 2640.74 | −4.11% |
3659 | 176.97 | 3801.25 | 3.89% |
3819 | 179.62 | 3858.12 | 1.02% |
4659 | 219.47 | 4713.27 | 1.16% |
4922 | 238.7 | 5125.93 | 4.14% |
5427 | 259.18 | 5565.41 | 2.55% |
5851 | 277.9 | 5967.13 | 1.98% |
6679 | 323.4 | 6943.53 | 3.96% |
6872 | 366.2 | 7861.98 | 1.44% |
7750 | 389.2 | 8355.54 | 2.69% |
8842 | 421.98 | 9058.98 | 2.45% |
9762 | 449.72 | 9654.26 | −1.10% |
10,210 | 485.59 | 10,424.00 | 2.10% |
Height (m) | Actual Voltage (V) | Measured Voltage (mV) | Reconstructed Voltage (V) | % Error |
---|---|---|---|---|
1 | 99.85 | 5.03 | 111.48 | 11.65 |
199.66 | 10.26 | 223.74 | 12.06 | |
299.44 | 15.44 | 334.92 | 11.85 | |
2 | 99.85 | 4.60 | 102.23 | 2.39 |
199.66 | 9.33 | 203.89 | 2.12 | |
299.44 | 14.02 | 304.44 | 1.67 | |
3 | 99.85 | 4.51 | 100.43 | 0.58 |
199.66 | 9.09 | 198.58 | −0.54 | |
299.44 | 13.91 | 302.08 | 0.88 | |
4 | 99.85 | 4.46 | 99.22 | −0.63 |
199.66 | 9.07 | 198.15 | −0.76 | |
299.44 | 13.71 | 297.72 | −0.57 | |
5 | 99.85 | 4.47 | 99.44 | −0.41 |
199.66 | 9.09 | 198.58 | −0.54 | |
299.44 | 13.70 | 297.50 | −0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Long, W.; Zhang, W.; Yan, P.; Zhou, Y.; Li, J. Transmission Line Voltage Calibration-Free Measurement Method. Electronics 2023, 12, 814. https://doi.org/10.3390/electronics12040814
Yang L, Long W, Zhang W, Yan P, Zhou Y, Li J. Transmission Line Voltage Calibration-Free Measurement Method. Electronics. 2023; 12(4):814. https://doi.org/10.3390/electronics12040814
Chicago/Turabian StyleYang, Le, Wei Long, Wenbin Zhang, Peiwu Yan, Yu Zhou, and Jiang Li. 2023. "Transmission Line Voltage Calibration-Free Measurement Method" Electronics 12, no. 4: 814. https://doi.org/10.3390/electronics12040814
APA StyleYang, L., Long, W., Zhang, W., Yan, P., Zhou, Y., & Li, J. (2023). Transmission Line Voltage Calibration-Free Measurement Method. Electronics, 12(4), 814. https://doi.org/10.3390/electronics12040814