Spatial Path Smoothing for Car-like Robots Using Corridor-Based Quadratic Optimization
Abstract
:1. Introduction
- A simple and efficient spatial corridor generation method for spatial corridor extraction is proposed. The problem of path optimization based on the generated spatial corridor are developed as quadratic forms.
- A convex multi-objective path optimization problem with corridor and maximum-curvature constraints is designed to generate a smooth and kinematically feasible path. The overall problem of path optimization is developed as a quadratic programming problem, which can be quickly solved. Meanwhile, a two-steps optimization strategy is designed to balance the optimization efficiency and quality.
- Our proposed method can be utilized to optimize the path in various scenarios. In addition, the experimental results demonstrate that our approach has a good performance in operational efficiency.
2. Related Work
3. Spatial Corridor Generation
Corridor Boundary Generation
Algorithm 1 Spatial Corridor Generation. |
|
4. Path Optimization
4.1. Path Point Representation
4.2. Multi-Objective Path Optimization
4.2.1. Path Length Optimization
4.2.2. Path Smoothness Optimization
4.2.3. Path Deviation Optimization
4.3. Optimization Constraints
4.3.1. Corridor Boundary Constraints
4.3.2. Corridor Internal Constraints
4.3.3. Curvature Constraints
Algorithm 2 Spatial path optimization. |
|
5. Experiment Results
5.1. Implementation Details
5.2. Standard Path Optimization
5.3. Racing Path Optimization
5.4. On Road Path Optimization
5.5. Complexity and Feasibility
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rasekhipour, Y.; Fadakar, I.; Khajepour, A. Autonomous driving motion planning with obstacles prioritization using lexicographic optimization. Control. Eng. Pract. 2018, 77, 235–246. [Google Scholar] [CrossRef]
- Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A review of motion planning for highway autonomous driving. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1826–1848. [Google Scholar] [CrossRef]
- Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transp. Res. Part Emerg. Technol. 2015, 60, 416–442. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- LaValle, S.M.; Kuffner, J.J. Rapidly-Exploring Random Trees: Progress and Prospects. Algorithmic Comput. Robot. 2001, 5, 303–307. [Google Scholar]
- Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [Google Scholar] [CrossRef]
- Liu, M. Robotic online path planning on point cloud. IEEE Trans. Cybern. 2015, 46, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W. Continuous-curvature paths for autonomous vehicles. In Proceedings of the International Conference on Robotics and Automation, Scottsdale, AZ, USA, 14–19 May 1989; pp. 1260–1264. [Google Scholar]
- Berglund, T.; Jonsson, H.; Soderkvist, I. An obstacle-avoiding minimum variation b-spline problem. In Proceedings of the International Conference on Geometric Modeling and Graphics, London, UK, 16–18 July 2003; pp. 156–161. [Google Scholar]
- Hwang, J.H.; Arkin, R.C.; Kwon, D.S. Mobile robots at your fingertip: Bezier curve on-line trajectory generation for supervisory control. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1444–1449. [Google Scholar]
- Connors, J.; Elkaim, G. Analysis of a spline based, obstacle avoiding path planning algorithm. In Proceedings of the Vehicular Technology Conference-VTC2007-Spring, Dublin, Ireland, 22–25 April 2007; pp. 2565–2569. [Google Scholar]
- Kuwata, Y.; Teo, J.; Fiore, G.; Karaman, S.; Frazzoli, E.; How, J.P. Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control. Syst. Technol. 2009, 17, 1105–1118. [Google Scholar] [CrossRef]
- Ma, L.; Xue, J.; Kawabata, K.; Zhu, J.; Ma, C.; Zheng, N. Efficient sampling-based motion planning for on-road autonomous driving. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1961–1976. [Google Scholar] [CrossRef]
- Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann. Arbor. 2008, 1001, 18–80. [Google Scholar]
- Dolgov, D.; Thrun, S. Autonomous driving in semi-structured environments: Mapping and planning. In Proceedings of the IEEE international Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3407–3414. [Google Scholar]
- Webb, D.J.; Van Den Berg, J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics. In Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5054–5061. [Google Scholar]
- Cardamone, L.; Loiacono, D.; Lanzi, P.L.; Bardelli, A.P. Searching for the optimal racing line using genetic algorithms. In Proceedings of the IEEE Conference on Computational Intelligence and Games, Copenhagen, Denmark, 18–21 August 2010; pp. 388–394. [Google Scholar]
- Ding, W.; Zhang, L.; Chen, J.; Shen, S. Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor. IEEE Robot. Autom. Lett. 2019, 4, 2997–3004. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Schmerling, E.; Pavone, M. A convex optimization approach to smooth trajectories for motion planning with car-like robots. In Proceedings of the IEEE conference on decision and control (CDC), Osaka, Japan, 15–18 December 2015; pp. 835–842. [Google Scholar]
- Schouwenaars, T.; De Moor, B.; Feron, E.; How, J. Mixed integer programming for multi-vehicle path planning. In Proceedings of the European control conference (ECC), Porto, Portugal, 4–7 September 2001; pp. 2603–2608. [Google Scholar]
- Ziegler, J.; Bender, P.; Dang, T.; Stiller, C. Trajectory planning for Bertha—A local, continuous method. In Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 450–457. [Google Scholar]
- Wu, X.; Li, Z.; Kan, Z.; Gao, H. Reference trajectory reshaping optimization and control of robotic exoskeletons for human–robot co-manipulation. IEEE Trans. Cybern. 2019, 50, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Savvaris, A.; Tsourdos, A.; Xia, Y.; Chai, S. Solving multiobjective constrained trajectory optimization problem by an extended evolutionary algorithm. IEEE Trans. Cybern. 2018, 50, 1630–1643. [Google Scholar] [CrossRef] [PubMed]
- Caporale, D.; Fagiolini, A.; Pallottino, L.; Settimi, A.; Biondo, A.; Amerotti, F.; Massa, F.; Caro, S.D.; Corti, A.; Venturini, L. A planning and control system for self-driving racing vehicles. In Proceedings of the IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI), Palermo, Italy, 10–13 September 2018; pp. 1–6. [Google Scholar]
- Braghin, F.; Cheli, F.; Melzi, S.; Sabbioni, E. Race driver model. Comput. Struct. 2008, 86, 1503–1516. [Google Scholar] [CrossRef]
- Ziegler, J.; Bender, P.; Schreiber, M.; Lategahn, H.; Strauss, T.; Stiller, C.; Dang, T.; Franke, U.; Appenrodt, N.; Keller, C.G.; et al. Making bertha drive—An autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 2014, 6, 8–20. [Google Scholar] [CrossRef]
- Gu, T.; Snider, J.; Dolan, J.M.; Lee, J. Focused trajectory planning for autonomous on-road driving. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia, 23–26 June 2013; pp. 547–552. [Google Scholar]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP solver for embedded systems. In Proceedings of the European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3071–3076. [Google Scholar]
- Stellato, B.; Banjac, G.; Goulart, P.; Bemporad, A.; Boyd, S. OSQP: An operator splitting solver for quadratic programs. Math. Program. Comput. 2020, 12, 637–672. [Google Scholar] [CrossRef]
- Zhou, J.; He, R.; Wang, Y.; Jiang, S.; Zhu, Z.; Hu, J.; Miao, J.; Luo, Q. Dl-iaps and pjso: A path/speed decoupled trajectory optimization and its application in autonomous driving. arXiv 2020, arXiv:2009.11135. [Google Scholar]
- Quinlan, S.; Khatib, O. Elastic bands: Connecting path planning and control. In Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; pp. 802–807. [Google Scholar]
- Gao, F.; Wang, L.; Zhou, B.; Zhou, X.; Pan, J.; Shen, S. Teach-repeat-replan: A complete and robust system for aggressive flight in complex environments. IEEE Trans. Robot. 2020, 36, 1526–1545. [Google Scholar] [CrossRef]
- Bender, P.; Ziegler, J.; Stiller, C. Lanelets: Efficient map representation for autonomous driving. In Proceedings of the IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 420–425. [Google Scholar]
Path | Length Cost | Smoothness Cost | Deviation Cost | Maximum Curvature Cost |
---|---|---|---|---|
Figure 7a | 105.170 | 43.371 | 0.000 | 0.381 |
Figure 7b | 104.790 | 1.968 | 2.266 | 0.114 |
Figure 7c | 177.627 | 48.650 | 0.000 | 0.427 |
Figure 7d | 176.764 | 3.093 | 3.182 | 0.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wu, Y.; Zhong, W.; Li, Y.; Chen, M. Spatial Path Smoothing for Car-like Robots Using Corridor-Based Quadratic Optimization. Electronics 2023, 12, 819. https://doi.org/10.3390/electronics12040819
Lu Y, Wu Y, Zhong W, Li Y, Chen M. Spatial Path Smoothing for Car-like Robots Using Corridor-Based Quadratic Optimization. Electronics. 2023; 12(4):819. https://doi.org/10.3390/electronics12040819
Chicago/Turabian StyleLu, Yongkang, Yuanqing Wu, Wenjian Zhong, Yanzhou Li, and Meng Chen. 2023. "Spatial Path Smoothing for Car-like Robots Using Corridor-Based Quadratic Optimization" Electronics 12, no. 4: 819. https://doi.org/10.3390/electronics12040819
APA StyleLu, Y., Wu, Y., Zhong, W., Li, Y., & Chen, M. (2023). Spatial Path Smoothing for Car-like Robots Using Corridor-Based Quadratic Optimization. Electronics, 12(4), 819. https://doi.org/10.3390/electronics12040819