A Calibration-Free Digital-to-Time Converter for Phase Interpolation-Based Fractional-N PLLs
Abstract
:1. Introduction
2. Overview
2.1. Phase Noise Introduced by DSM
2.2. Principles of Phase Interpolation
3. Quantization Noise Reduction Technique
3.1.
3.2. Multi-Modulus Divider
3.3. Digital-to-Time Converter
3.4. DAC Nonidealities
3.5. Phase Noise of the Proposed FNPLL
4. Measurements Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maneatis, J.; Kim, J.; McClatchie, I.; Maxey, J.; Shankaradas, M. Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL. IEEE J. Solid-State Circuits 2003, 38, 1795–1803. [Google Scholar] [CrossRef]
- Kong, L.; Razavi, B. A 2.4-GHz 6.4-mW Fractional-N Inductorless RF Synthesizer. IEEE J. Solid-State Circuits 2017, 52, 2117–2127. [Google Scholar] [CrossRef]
- Zhang, H.; Du, X.; Zhang, Y.; Gong, L.; Cheng, J. A low-jitter third-order self-biased PLL with adaptive fast-locking scheme for SerDes interfaces. Analog. Integr. Circuits Signal Process. 2015, 85, 311–321. [Google Scholar] [CrossRef]
- ur Rahman, F.; Taylor, G.; Sathe, V. A 1–2 GHz Computational-Locking ADPLL With Sub-20-Cycle Locktime Across PVT Variation. IEEE J. Solid-State Circuits 2019, 54, 2487–2500. [Google Scholar] [CrossRef]
- Robles, R.A.; Harada, T. A Low Power 0.6V Filter-less AD-PLL with a Fast Locking Algorithm in the Subthreshold Region. In Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Hualien City, Taiwan, 16–19 November 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Dolt, D.; Livingston, Q.; Liu, T.; Kumar, A.; Palermo, S. SEE Sensitivity of a 16GHz LC-Tank VCO in a 22nm FinFET Technology. In Proceedings of the 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 27 May–1 June 2022; pp. 254–257. [Google Scholar] [CrossRef]
- Park, P.; Park, D.; Cho, S. A 2.4 GHz Fractional-N Frequency Synthesizer With High-OSR ΔΣ Modulator and Nested PLL. IEEE J. Solid-State Circuits 2012, 47, 2433–2443. [Google Scholar] [CrossRef]
- Telli, A.; Kale, I. A range of allowable number of input bits for tone free delta-sigma operation in digital MASH Delta-Sigma Fractional-N frequency synthesizers. In Proceedings of the 2012 IEEE Asia Pacific Conference on Circuits and Systems, Kaohsiung, Taiwan, 2–5 December 2012; pp. 587–590. [Google Scholar] [CrossRef]
- Zhang, Y.; Sanyal, A.; Yu, X.; Quan, X.; Wen, K.; Tang, X.; Jin, G.; Geng, L.; Sun, N. A Fractional-N PLL with Space-Time Averaging for Quantization Noise Reduction. IEEE J. Solid-State Circuits 2020, 55, 602–614. [Google Scholar] [CrossRef]
- Zanuso, M.; Levantino, S.; Samori, C.; Lacaita, A.L. A Wideband 3.6 GHz Digital ΔΣ Fractional-N PLL With Phase Interpolation Divider and Digital Spur Cancellation. IEEE J. Solid-State Circuits 2011, 46, 627–638. [Google Scholar] [CrossRef]
- Su, P.-E.; Pamarti, S. Fractional-N Phase-Locked-Loop-Based Frequency Synthesis: A Tutorial. IEEE Trans. Circuits Syst. II Express Briefs 2009, 56, 881–885. [Google Scholar] [CrossRef]
- Swaminathan, A.; Wang, K.J.; Galton, I. A Wide-Bandwidth 2.4GHz ISM-Band Fractional-N PLL with Adaptive Phase-Noise Cancellation. IEEE J. Solid-State Circuits 2007, 42, 2639–2650. [Google Scholar] [CrossRef]
- Yin, X.; Xiao, S.; Jin, Y.; Wu, Q.; Ma, C.; Ye, T. A constant loop bandwidth fractional- N frequency synthesizer for GNSS receivers. J. Semicond. 2012, 33, 045007. [Google Scholar] [CrossRef]
- Rhee, W.; Xu, N.; Zhou, B.; Wang, Z. Fractional-N Frequency Synthesis: Overview and Practical Aspects with FIR-Embedded Design. JSTS J. Semicond. Technol. Sci. 2013, 13, 170–183. [Google Scholar] [CrossRef]
- Zhao, F.; Dai, F.F. Low-Noise Low-Power Design for Phase-Locked Loops; Springer: Cham, Switzerland, 2015; pp. 1–96. [Google Scholar] [CrossRef]
- Nandwana, R.K.; Anand, T.; Saxena, S.; Kim, S.J.; Talegaonkar, M.; Elkholy, A.; Choi, W.S.; Elshazly, A.; Hanumolu, P.K. A Calibration-Free Fractional-N Ring PLL Using Hybrid Phase/Current-Mode Phase Interpolation Method. IEEE J. Solid-State Circuits 2015, 50, 882–895. [Google Scholar] [CrossRef]
- Zhang, Y.; Mueller, J.H.; Mohr, B.; Liao, L.; Atac, A.; Wunderlich, R.; Heinen, S. A Multi-Frequency Multi-Standard Wideband Fractional- PLL With Adaptive Phase-Noise Cancellation for Low-Power Short-Range Standards. IEEE Trans. Microw. Theory Tech. 2016, 64, 1133–1142. [Google Scholar] [CrossRef]
- Hati, M.K.; Bhattacharyya, T.K. A constant loop bandwidth in delta sigma fractional-N PLL frequency synthesizer with phase noise cancellation. Integration 2019, 65, 175–188. [Google Scholar] [CrossRef]
- Hsu, C.M.; Straayer, M.Z.; Perrott, M.H. A Low-Noise Wide-BW 3.6-GHz Digital ΔΣ Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation. IEEE J. Solid-State Circuits 2008, 43, 2776–2786. [Google Scholar] [CrossRef]
- Jian, H.Y.; Xu, Z.; Wu, Y.C.; Chang, M.C.F. A Fractional- N PLL for Multiband (0.8–6 GHz) Communications Using Binary-Weighted D/A Differentiator and Offset-Frequency Δ-Σ Modulator. IEEE J. Solid-State Circuits 2010, 45, 768–780. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Chang, C.-H.; Wong, W.-G. A Δ-Σ PLL-Based Spread-Spectrum Clock Generator With a Ditherless Fractional Topology. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 51–59. [Google Scholar] [CrossRef]
- Huang, C.W.; Gui, P.; Fan, Y.; Morgan, M. An instant-switching Δ-Σ fractional-N frequency synthesizer with adjustable duty cycles. Analog. Integr. Circuits Signal Process. 2012, 72, 89–95. [Google Scholar] [CrossRef]
- Xiu, L.; Lin, W.T.; Lee, T.T. Flying-Adder Fractional Divider Based Integer-N PLL: 2nd Generation FAPLL as On-Chip Frequency Generator for SoC. IEEE J. Solid-State Circuits 2013, 48, 441–455. [Google Scholar] [CrossRef]
- Xiu, L.; Chen, P.L. A Reconfigurable TAF-DPS Frequency Synthesizer on FPGA Achieving 2 ppb Frequency Granularity and Two-Cycle Switching Speed. IEEE Trans. Ind. Electron. 2017, 64, 1233–1240. [Google Scholar] [CrossRef]
- Liang, Z.; Yi, X.; Yang, K.; Boon, C.C. A 2.6–3.4 GHz Fractional- N Sub-Sampling Phase-Locked Loop Using a Calibration-Free Phase-Switching-Sub-Sampling Technique. IEEE Microw. Wirel. Components Lett. 2018, 28, 147–149. [Google Scholar] [CrossRef]
- Gammoh, K.; Peterson, C.K.; Penry, D.A.; Wood, S.H.C. Linearity Theory of Stochastic Phase-Interpolation Time-to-Digital Converter. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4348–4359. [Google Scholar] [CrossRef]
- Pamarti, S.; Delshadpour, S. A Spur Elimination Technique for Phase Interpolation-Based Fractional-N PLLs. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 55, 1639–1647. [Google Scholar] [CrossRef]
- Riley, T.; Copeland, M.; Kwasniewski, T. Delta-sigma modulation in fractional-N frequency synthesis. IEEE J. Solid-State Circuits 1993, 28, 553–559. [Google Scholar] [CrossRef]
- Jee, D.W.; Seo, Y.H.; Park, H.J.; Sim, J.Y. A 2 GHz Fractional-N Digital PLL with 1b Noise Shaping ΔΣ TDC. IEEE J. Solid-State Circuits 2012, 47, 875–883. [Google Scholar] [CrossRef]
- Jee, D.W.; Suh, Y.; Kim, B.; Park, H.J.; Sim, J.Y. A FIR-Embedded Phase Interpolator Based Noise Filtering for Wide-Bandwidth Fractional-N PLL. IEEE J. Solid-State Circuits 2013, 48, 2795–2804. [Google Scholar] [CrossRef]
- Elkholy, A.; Saxena, S.; Nandwana, R.K.; Elshazly, A.; Hanumolu, P.K. A 2.0–5.5 GHz Wide Bandwidth Ring-Based Digital Fractional-N PLL With Extended Range Multi-Modulus Divider. IEEE J. Solid-State Circuits 2016, 51, 1771–1784. [Google Scholar] [CrossRef]
- Kao, T.K.; Liang, C.F.; Chiu, H.H.; Ashburn, M. A wideband fractional-N ring PLL with fractional-spur suppression using spectrally shaped segmentation. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; Volume 56, pp. 416–417. [Google Scholar] [CrossRef]
Input Code | Min(A) | Max(A) | Mean(A) | Std Dev(A) |
---|---|---|---|---|
0000_0001 | 535.7 n | 563.8 n | 549.0 n | 5.006 n (0.91%) |
0000_0010 | 1.038 u | 1.096 u | 1.066 u | 10.29 n (0.97%) |
0000_0100 | 2.001 u | 2.127 u | 2.060 u | 22.80 n (0.91%) |
0000_1000 | 3.997 u | 4.248 u | 4.114 u | 45.35 n (1.11%) |
0001_0000 | 8.000 u | 8.491 u | 8.228 u | 88.92 n (1.08%) |
0010_0000 | 16.00 u | 16.98 u | 16.46 u | 177.8 n (1.08%) |
0100_0000 | 32.00 u | 33.96 u | 32.91 u | 355.7 n (1.08%) |
1000_0000 | 64.00 u | 67.93 u | 65.82 u | 711.4 n (1.08%) |
This Work | [9] | [16] | [29] | [30] | [31] | [32] | |
---|---|---|---|---|---|---|---|
Quan. Noise Elimination Tech. | DTC PI | 16-channel STA | Hybird-P/C PI | New DSM | FIR-embeded PI | DTC cancel | Segmented PI |
Accuracy of PI | N/A | ||||||
Technology (nm) | 110 | 40 | 65 | 130 | 130 | 65 | 40 |
Output Frequency (GHz) | 2.2–2.8 | 1.67–3.12 | 4.25–4.75 | 2 | 1 | 2.0–5.5 | 1.87–1.98 |
Reference Frequency (MHz) | 25 | 50 | 50 | 64 | 32 | 50 | 26 |
Bandwidth (MHz) | 1.65 | 2.76 | 12 | 1 | 3.2 | 5 | 2 |
Phase Noise (dBc/Hz @ 1 MHz) | −117 | −100 | −104 | −107 @ 500 kHz | −106 @ 100 kHz | −97 | −98 |
Phase Noise (dBc/Hz @ 10 MHz) | −138 | −114 | N/A | −118 @ 3 MHz | −107.5 @ 6 MHz | N/A | −115 |
RMS Jitter (ps) (Integ. Range (MHz)) | 0.860 (0.001–50) | 2.26 (0.001–100) | 1.50 (0.004–40) | N/A | N/A | 1.86 (0.01–100) | 3.10 (0.004–40) |
Supply Voltage (V) | 1.8 | N/A | 1 | 1.1–1.3 | N/A | 0.9 | 2.5 and 1.2 |
Core Area (mm) | 1.49 | 0.086 | 0.48 | 0.35 | 0.31 | 0.084 | 0.055 |
Core Power (mW) | 20.3 | 4.85 | 11.6 | 21 | 16.8 | 4 | 10 |
Area of PI Circuits 1 (um) | 6660 | 17122 | N/A | N/A | 87500 | 4000 | 20900 |
Power of PI Circuits (mW) | 1.356 | 1.29 | 2.552 | N/A | N/A | N/A | N/A |
FOM 2 | −228.2 | −226.1 | −225.8 | N/A | N/A | −228.5 | −219.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, W.; Liu, Q.; Gan, Y. A Calibration-Free Digital-to-Time Converter for Phase Interpolation-Based Fractional-N PLLs. Electronics 2023, 12, 841. https://doi.org/10.3390/electronics12040841
Liang W, Liu Q, Gan Y. A Calibration-Free Digital-to-Time Converter for Phase Interpolation-Based Fractional-N PLLs. Electronics. 2023; 12(4):841. https://doi.org/10.3390/electronics12040841
Chicago/Turabian StyleLiang, Weishuang, Qi Liu, and Yebing Gan. 2023. "A Calibration-Free Digital-to-Time Converter for Phase Interpolation-Based Fractional-N PLLs" Electronics 12, no. 4: 841. https://doi.org/10.3390/electronics12040841
APA StyleLiang, W., Liu, Q., & Gan, Y. (2023). A Calibration-Free Digital-to-Time Converter for Phase Interpolation-Based Fractional-N PLLs. Electronics, 12(4), 841. https://doi.org/10.3390/electronics12040841