Modified Heuristic Computational Techniques for the Resource Optimization in Cognitive Radio Networks (CRNs)
Abstract
:1. Introduction
1.1. Contribution of the Article
- A resource allocation scheme for a cognitive radio-based non-orthogonal multiple-access device-to-device network is proposed. Two heuristic algorithms, i.e., the modified non-dominated sorting genetic algorithm (MNSGA) and the modified whale optimization algorithm (MWOA) for throughput maximization. Previously, resources were not utilized correctly because only MUs had licenses to use them, and DUs caused interference due to a shortage of resources. In our case, the issue of resource availability is solved by allocating free resources to DUs when they are not being utilized by MUs by using cognitive radio for non-orthogonal multiple-access device-to-device communication.
- To find near-optimal solutions, evolutionary computing techniques called MNSGA and MWOA are used in this paper. To contrast them, MNSGA has fast and efficient convergence and searches for solutions across a wide range of dimensions. Furthermore, MNSGA is proficient at solving high-dimensional multi-objective problems, whereas MWOA can avoid local optima and find optimal solutions.
- The performances of the developed techniques are analyzed and compared with that of state-of-the-art techniques. The proposed techniques in this paper perform better in terms of maximizing system performance. Experimental results demonstrate the effectiveness of the proposed techniques.
1.2. Organization of the Article
2. Related Work
3. Framework of Proposed Model
3.1. D2D CR Network
3.2. Proposed Model
amq,n Pqgq,p + ∑ amk,s Pkgk,p + N0
{a, p}
C1: 0 ≤ Pm ≤ PMU ∀ m ∈ M
C2: 0 ≤ Pd ≤ PDU ∀ d ∈ D
C3: RT ≤ Ri ∀ i ∈ M ∪ D
C4: ∑i∈M ali,n ≤ 1
C5: ∑ ald,i + aud ≤ 1
4. Modified Heuristic Algorithms
4.1. Modified Non-Dominated Sorting Genetic Algorithm (MNSGA)
- Initializing the population: Create a population that is based on the issues, distance, and entities.
- Ranking that is not dominated: Use a sorting procedure based on the population’s non-dominance criteria.
- Establishing a crowding distance: After the ranking is finished, a value for the crowding distance is allocated. Individuals in the population are chosen based on their rank and the crowding distance.
- Making selections: Entities are selected using binary tournament selection with the comparison with the crowding operator. The fifth step is to use genetic operators. Using simulated binary crossover and mutation, a real-coded MNSGA was created. Recombination and selection are the sixth and final steps. Individuals from the next generation are chosen from the offspring population and the current generation population. Each front fills a new generation until the population size exceeds the current population size.
4.2. Modified Whale Optimization Algorithm (MWOA)
4.2.1. Encoding of Whales
4.2.2. Encircling Prey Methodology
4.2.3. Bubble-Net Attacking Methodology
4.2.4. Search for Prey
5. Experimental Results and Discussion
5.1. Convergence of MNSGA & MWOA
Algorithm 1: Modified Whale Optimization Algorithm | |
1 | Initialize |
2 | Population of Whales: Xi, i = 1, 2, 3, ..., n |
3 | Measure; Fitness for the search agents |
4 | while t ≤ MaximumNo.o f Iterations do |
5 | UpdateConstraints for each Agent |
6 | ifp < 0.5 and|A|< 1then |
7 | end |
8 | Update: Position of Current Search Agent |
9 | if |A| ≥ 1 then end |
10 | Select Random Search Engine Xr |
11 | Update: Position of Current Search Agent |
12 | ifp ≥ 0.5 then |
13 | end |
14 | Update: Location of Current Search Agent |
15 | CalculateFitness Search Agent |
16 | UpdateBest Search Agent |
17 | end |
18 | return Best Position & Fitness Value |
5.2. Throughput Analysis for MU & DU
5.3. Throughput Analysis for Various Distances
5.4. Throughput Analysis for Various Distances
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based secure energy efficient beamforming in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2022. [Google Scholar] [CrossRef]
- Ghosh, U.; Tosh, D.; Qureshi, N.M.F.; Bashir, A.K.; Pathan, A.S.K.; Ning, Z. Cyber-Physical Systems: Prospects, Challenges and Role in Software-Defined Networking and Blockchains. Future Internet 2022, 14, 382. [Google Scholar] [CrossRef]
- Ali, A.; Abbas, L.; Shafiq, M.; Bashir, A.K.; Afzal, M.K.; Liaqat, H.B.; Siddiqi, M.H.; Kwak, K.S. Hybrid fuzzy logic scheme for efficient channel utilization in cognitive radio networks. IEEE Access 2019, 7, 24463–24476. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Han, L.; Xing, R. Utilization-oriented spectrum allocation in an underlay cognitive radio network. IEEE Access 2018, 6, 12905–12912. [Google Scholar] [CrossRef]
- Chuang, C.L.; Chiu, W.Y.; Chuang, Y.C. Dynamic multiobjective approach for power and spectrum allocation in cognitive radio networks. IEEE Syst. J. 2021, 15, 5417–5428. [Google Scholar] [CrossRef]
- Singh, W.N.; Marchang, N. Spectrum Allocation in Cognitive Radio Networks Using Gene Therapy-Based Evolutionary Algorithms. Arab. J. Sci. Eng. 2022, 47, 10277–10293. [Google Scholar] [CrossRef]
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Wu, G.; Sun, Z.; Chen, G. Research on Multi-Agent D2D Communication Resource Allocation Algorithm Based on A2C. Electronics 2023, 12, 360. [Google Scholar] [CrossRef]
- Laguidi, A.; Hachad, T.; Hachad, L. Mobile network connectivity analysis for device to device communication in 5G network. Int. J. Elect. Comput. Eng. (2088-8708) 2023, 13. [Google Scholar] [CrossRef]
- Salahdine, F.; Han, T.; Zhang, N. 5G, 6G, and Beyond: Recent advances and future challenges. Ann. Telecommun. 2023, 1–25. [Google Scholar] [CrossRef]
- Kuang, Z.; Li, G.; Zhang, L.; Zhou, H.; Li, C.; Liu, A. Energy efficient mode selection, base station selection and resource allocation algorithm in D2D heterogeneous networks. Peer-Peer Netw. Appl. 2020, 13, 1814–1829. [Google Scholar] [CrossRef]
- Liao, J.; Yu, H.; Jiang, W.; Lin, R.; Wang, J. Optimal resource allocation method for energy harvesting based underlay Cognitive Radio networks. PLoS ONE 2023, 18, e0279886. [Google Scholar] [CrossRef]
- Tegou, T.I.; Tsiflikiotis, A.; Vergados, D.D.; Siakavara, K.; Nikolaidis, S.; Goudos, S.K.; Sarigiannidis, P.; Obaidat, M. Spectrum allocation in cognitive radio networks using chaotic biogeography-based optimisation. IET Netw. 2018, 7, 328–335. [Google Scholar] [CrossRef]
- Hussain, A.; Sohail, M.; Alam, S.; Ghauri, S.A.; Qureshi, I.M. Classification of M-QAM and M-PSK signals using genetic programming (GP). Neural Comput. Appl. 2019, 31, 6141–6149. [Google Scholar] [CrossRef]
- Sarfraz, M.; Sohail, M.F.; Alam, S.; ur Rehman, M.J.; Ghauri, S.A.; Rabie, K.; Abbas, H.; Ansari, S. Capacity Optimization of Next-Generation UAV Communication Involving Non-Orthogonal Multiple Access. Drones 2022, 6, 234. [Google Scholar] [CrossRef]
- Hamdi, M.; Zaied, M. Resource allocation based on hybrid genetic algorithm and particle swarm optimization for D2D multicast communications. Appl. Soft Comput. 2019, 83, 105605. [Google Scholar] [CrossRef]
- AlJubayrin, S.; Sarfraz, M.; Ghauri, S.A.; Amirzada, M.R.; Kebedew, T.M. Research Article Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification. Comput. Intell. Neurosci. 2022, 2022. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.I.H.; Coronato, A.; Ghauri, S.A.; Alam, S.; Sarfraz, M. CSA-Assisted Gabor Features for Automatic Modulation Classification. Circuits Syst. Signal Process. 2022, 41, 1660–1682. [Google Scholar] [CrossRef]
- Arun, J.; Karthikeyan, M. Optimized cognitive radio network (CRN) using genetic algorithm and artificial bee colony algorithm. Clust. Comput. 2019, 22, 3801–3810. [Google Scholar] [CrossRef]
- Alhussien, N.; Gulliver, T.A. Joint Resource and Power Allocation for Clustered Cognitive M2M Communications Underlaying Cellular Networks. IEEE Trans. Veh. Technol. 2022, 71, 8548–8560. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Panwar, A.; Ozdemir, O.; Masazade, E.; Kasperovich, I.; Drozd, A.L.; Mohan, C.K.; Varshney, P.K. Enhanced dynamic spectrum access in multiband cognitive radio networks via optimized resource allocation. IEEE Trans. Wirel. Commun. 2016, 15, 8093–8106. [Google Scholar] [CrossRef]
- Elhachmi, J.; Guennoun, Z. Cognitive radio spectrum allocation using genetic algorithm. EURASIP J. Wirel. Commun. Netw. 2016, 2016, 133. [Google Scholar] [CrossRef] [Green Version]
- Ruby, D.; Vijayalakshmi, M.; Kannan, A. Intelligent relay selection and spectrum sharing techniques for cognitive radio networks. Clust. Comput. 2019, 22, 10537–10548. [Google Scholar] [CrossRef]
- Darney, P.E.; Jacob, I.J. Performance enhancements of cognitive radio networks using the improved fuzzy logic. J. Soft Comput. Paradig. 2019, 1, 57–68. [Google Scholar] [CrossRef]
- Anumandla, K.K.; Sabat, S.L.; Peesapati, R.; AV, P.; Dabbakuti, J.K.; Rout, R. Optimal spectrum and power allocation using evolutionary algorithms for cognitive radio networks. Internet Technol. Lett. 2021, 4, e207. [Google Scholar] [CrossRef]
- Han, R.; Gao, Y.; Wu, C.; Lu, D. An effective multi-objective optimization algorithm for spectrum allocations in the cognitive-radio-based Internet of Things. IEEE Access 2018, 6, 12858–12867. [Google Scholar] [CrossRef]
- Pham, Q.V.; Mirjalili, S.; Kumar, N.; Alazab, M.; Hwang, W.J. Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Trans. Veh. Technol. 2020, 69, 4285–4297. [Google Scholar] [CrossRef]
- Sumathi, D.; Manivannan, S. Stochastic approach for channel selection in cognitive radio networks using optimization techniques. Telecommun. Syst. 2021, 76, 167–186. [Google Scholar] [CrossRef]
- Tuberquia-David, M.; Hernández, C.; Martínez, F. Spectrum handoff reduction in cognitive radio networks using evolutionary algorithms. J. Intell. Fuzzy Syst. 2019, 36, 6049–6058. [Google Scholar] [CrossRef]
- Dang, B.T.; Vo, M.C.; Truong, T.K. Social spider algorithm-based spectrum allocation optimization for cognitive radio networks. Int. J. Appl. Eng. Res. 2017, 12, 3879–3887. [Google Scholar]
- Wu, R.Z.; Gao, L.Y.; Tang, L.R.; Zhu, J.J. Optimal Spectrum Allocation of Cognitive Radio Network Under Underlay Model. Wirel. Pers. Commun. 2017, 97, 469–481. [Google Scholar] [CrossRef]
- Dong, X.; Cheng, L.; Zheng, G.; Wang, T. Multi-objective optimization method for spectrum allocation in cognitive heterogeneous wireless networks. Aip Adv. 2019, 9, 045130. [Google Scholar] [CrossRef]
- Hasan, N.U.; Ejaz, W.; Ejaz, N.; Kim, H.S.; Anpalagan, A.; Jo, M. Network selection and channel allocation for spectrum sharing in 5G heterogeneous networks. IEEE Access 2016, 4, 980–992. [Google Scholar] [CrossRef]
- Alam, S.; Sarfraz, M.; Usman, M.; Ahmad, M.; Iftikhar, S. Dynamic resource allocation for cognitive radio based smart grid communication networks. Int. J. Adv. Appl. Sci. 2017, 4, 76–83. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, K. Energy-efficient resource allocation in cognitive radio networks under cooperative multi-agent model-free reinforcement learning schemes. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1337–1348. [Google Scholar] [CrossRef]
- Giupponi, L.; Pérez-Neira, A.I. Fuzzy-based spectrum handoff in cognitive radio networks. In Proceedings of the 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom 2008), Singapore, 15–17 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6. [Google Scholar]
- Hawa, M.; AlAmmouri, A.; Alhiary, A.; Alhamad, N. Distributed opportunistic spectrum sharing in cognitive radio networks. Int. J. Commun. Syst. 2017, 30, e3147. [Google Scholar] [CrossRef]
- Uma, V.; Hyrunnisha, N. Maximum utilization of spectrum through cognitive radio system using fuzzy logic system. Int. J. Comput. Sci. Trends Technol. (IJCST) 2017, 5. [Google Scholar]
- Zhang, W.; Sun, Y.; Deng, L.; Yeo, C.K.; Yang, L. Dynamic spectrum allocation for heterogeneous cognitive radio networks with multiple channels. IEEE Syst. J. 2018, 13, 53–64. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, C.X.; Ge, X.; Chen, Y. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum aggregation. IEEE Trans. Commun. 2018, 66, 6304–6316. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Sahoo, D. Sequence-based channel hopping algorithms for dynamic spectrum sharing in cognitive radio networks. IEEE J. Sel. Areas Commun. 2016, 34, 2814–2828. [Google Scholar] [CrossRef]
- Ostovar, A.; Zikria, Y.B.; Kim, H.S.; Ali, R. Optimization of resource allocation model with energy-efficient cooperative sensing in green cognitive radio networks. IEEE Access 2020, 8, 141594–141610. [Google Scholar] [CrossRef]
- Mahmood, Z.S.; Coran, A.N.N.; Kamal, A.E. Dynamic approach for spectrum sharing in cognitive radio. Int. J. Eng. Technol. 2018, 7, 5408–5411. [Google Scholar]
- Sultana, A.; Zhao, L.; Fernando, X. Efficient resource allocation in device-to-device communication using cognitive radio technology. IEEE Trans. Veh. Technol. 2017, 66, 10024–10034. [Google Scholar] [CrossRef]
- Waqas, M.; Aslam, S.; Ali, Z.; Sidhu, G.A.S.; Xin, Q.; Jang, J.W. Resource optimization for cognitive radio based device to device communication under an energy harvesting scenario. IEEE Access 2020, 8, 24862–24872. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Li, L.; Liu, X.; Xu, W. A two-stage energy-efficient approach for joint power control and channel allocation in D2D communication. IEEE Access 2019, 7, 16940–16951. [Google Scholar] [CrossRef]
- Li, J.; Lei, G.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. D2D communication mode selection and resource optimization algorithm with optimal throughput in 5G network. IEEE Access 2019, 7, 25263–25273. [Google Scholar] [CrossRef]
- Latif, S.; Akraam, S.; Karamat, T.; Khan, M.A.; Altrjman, C.; Mey, S.; Nam, Y. An efficient pareto optimal resource allocation scheme in cognitive radio-based internet of things networks. Sensors 2022, 22, 451. [Google Scholar] [CrossRef]
- Alam, S.; Sohail, M.F.; Ghauri, S.A.; Qureshi, I.; Aqdas, N. Cognitive radio based smart grid communication network. Renew. Sustain. Energy Rev. 2017, 72, 535–548. [Google Scholar] [CrossRef]
- Girmay, G.G.; Pham, Q.V.; Hwang, W.J. Joint channel and power allocation for device-to-device communication on licensed and unlicensed band. IEEE Access 2019, 7, 22196–22205. [Google Scholar] [CrossRef]
- Shah, S.I.H.; Alam, S.; Ghauri, S.A.; Hussain, A.; Ansari, F.A. A novel hybrid cuckoo search extreme learning machine approach for modulation classification. IEEE Access 2019, 7, 90525–90537. [Google Scholar] [CrossRef]
- Sohail, M.; Alam, S.; Hussain, A.; Ghauri, S.A.; Sarfraz, M.; Ahmed, M. Multiuser detection: Comparative analysis of heuristic approach. Int. J. Adv. Appl. Sci. 2017, 4, 115–120. [Google Scholar]
Parameters | Value |
---|---|
No. of Iterations | 200 |
No. of MUs | 08 |
No. of DUs | 10 |
No. of Channels | 20 |
Bandwidth | 1 MHz |
BS Coverage | 500 m |
Max Transmission Power | 23 dBm |
Parameters of MNSGA | |
Population Size | 100 |
Crossover Rate | 0.5 |
Mutation | 0.03 |
Crossover Type | Multiple Point |
Parameters of MWOA | |
Spiral Update Probability | 0.5 |
Shrinking Encircling | 0.5 |
Random Search Ability | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, A.; Latif, S.; Ghauri, S.A.; Song, O.-Y.; Abbasi, A.A.; Karamat, T. Modified Heuristic Computational Techniques for the Resource Optimization in Cognitive Radio Networks (CRNs). Electronics 2023, 12, 973. https://doi.org/10.3390/electronics12040973
Bilal A, Latif S, Ghauri SA, Song O-Y, Abbasi AA, Karamat T. Modified Heuristic Computational Techniques for the Resource Optimization in Cognitive Radio Networks (CRNs). Electronics. 2023; 12(4):973. https://doi.org/10.3390/electronics12040973
Chicago/Turabian StyleBilal, Ahmad, Shahzad Latif, Sajjad A. Ghauri, Oh-Young Song, Aaqif Afzaal Abbasi, and Tehmina Karamat. 2023. "Modified Heuristic Computational Techniques for the Resource Optimization in Cognitive Radio Networks (CRNs)" Electronics 12, no. 4: 973. https://doi.org/10.3390/electronics12040973
APA StyleBilal, A., Latif, S., Ghauri, S. A., Song, O. -Y., Abbasi, A. A., & Karamat, T. (2023). Modified Heuristic Computational Techniques for the Resource Optimization in Cognitive Radio Networks (CRNs). Electronics, 12(4), 973. https://doi.org/10.3390/electronics12040973