Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets
Abstract
:1. Introduction
- (1)
- The robust subspace clustering algorithm with block diagonal representation (OBDR) is proposed to handle noises, in which the noises are modeled using l2,1 norm, and the Laplacian rank constraint is adopted to pursue a block diagonal structure of the subspace representation;
- (2)
- The objective function of the proposed algorithm is designed and a corresponding optimization process based on ADMM is given. The algorithm is presented and the time complexity is analyzed;
- (3)
- Experiments on artificial noisy digital dataset MNIST and face datasets (ORL and YaleB) show that OBDR is insensitive to noises.
2. The Proposed Method
3. Optimization of the Objective Function
Algorithm 1 OBDR |
Input: X, λ, γ, ρ Initialization: V = 0, B = 0, Z = 0, E = 0, Λ = 0, μ = 10−3, μmax = 108, ε = 10−6, t = 0, Maxloop = 500. 1. WHILE t < Maxloop DO 2. Update E by Equation (12); 3. Update Z by Equation (16); 4. Update B by Equation (17); 5. Update V by Equation (19); 6. Update Λ, Λ = Λ + μ(X − XZ − E); 7. Update μ, μ = min(ρμ, μmax); 8. if Max(,,) < ε, break; 9. t = t + 1; 10. END. Ouput: Z, B |
4. Experiments and Discussions
4.1. Experimental Datasets
- (1)
- Outliers: For a given data set, outliers are data that are beyond all subspaces of this data, i.e., outliers come from different data models, rather than a simple situation that is floating between subspaces [19], so we select small samples from different data sets to simulate outliers for a given data set;
- (2)
- Masking noises: A fraction of an image is masked by setting the elements of the masked position to 0 [46];
- (3)
- Additive Gaussian noises: for an image x [46].
- (1)
- Dataset1 for outliers (D1)
- (2)
- Dataset2 for masking noise (D2)
- (3)
- Dataset3 for Gaussian noise (D3)
- (4)
- Dataset4 for mixture noise (D4)
4.2. Experimental Setup
4.3. Experimental Results
4.4. Parameter Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jain, A.K.; Murty, M.N.; Flynn, P.J. Data clustering: A review. ACM Comput. Surv. 1999, 31, 264–323. [Google Scholar] [CrossRef]
- Gear, C.W. Multibody grouping from motion images. Int. J. Comput. Vis. 1998, 29, 133–150. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Liu, L.; Lan, H.; Lin, L. Tcgl: Temporal contrastive graph for self-supervised video representation learning. IEEE Trans. Image Process. 2022, 31, 1978–1993. [Google Scholar] [CrossRef]
- Ban, Y.; Liu, M.; Wu, P.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Depth estimation method for monocular camera defocus images in microscopic scenes. Electronics 2022, 11, 2012. [Google Scholar] [CrossRef]
- Jing, L.P.; Ng, M.K.; Huang, J.Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 2007, 19, 1026–1041. [Google Scholar] [CrossRef]
- Hong, W.; Wright, J.; Huang, K.; Ma, Y. Multiscale hybrid linear models for lossy image representation. IEEE Trans. Image Process. 2006, 15, 3655–3671. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Lv, Y.; Lei, J.; Yu, L. Global and local-contrast guides content-aware fusion for RGB-D saliency prediction. IEEE Trans. Syst. Man Cybern. 2021, 51, 3641–3649. [Google Scholar] [CrossRef]
- Basri, R.; Jacobs, D.W. Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 218–233. [Google Scholar] [CrossRef]
- Jiang, S.; Zhao, C.; Zhu, Y.; Wang, C.; Du, Y.; Lei, W.; Wang, L. A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. J. Adv. Transp. 2022, 2022, 3815306. [Google Scholar] [CrossRef]
- Johnson, S.C. Hierarchical clustering schemes. Psychometrika 1967, 32, 241–254. [Google Scholar] [CrossRef]
- Kriegel, H.P.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip. Rev.-Data Min. Knowl. Discov. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Xiong, S.; Li, B.; Zhu, S. DCGNN: A single-stage 3D object detection network based on density clustering and graph neural network. Complex Intell. Syst. 2022. [Google Scholar] [CrossRef]
- Elhamifar, E.; Vidal, R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 2765–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Ban, Y.; Wu, P.; Yang, B.; Liu, S.; Yin, L.; Liu, M.; Zheng, W. Improved image fusion method based on sparse decomposition. Electronics 2022, 11, 2321. [Google Scholar] [CrossRef]
- Liu, G.C.; Lin, Z.C.; Yu, Y. Robust subspace segmentation by low-rank representation. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 1–8. [Google Scholar]
- Liu, M.S.; Wang, Y.; Sun, J.; Ji, Z.C. Structured block diagonal representation for subspace clustering. Appl. Intell. 2020, 50, 2523–2536. [Google Scholar] [CrossRef]
- Lu, C.Y.; Feng, J.S.; Lin, Z.C.; Mei, T.; Yan, S.C. Subspace clustering by block diagonal representation. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 487–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, R.; Ma, Y.; Sastry, S. Generalized Principal Component Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Liu, G.C.; Lin, Z.C.; Yan, S.C.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wu, Y.; Li, T.; Ghosh, B.K. Consensus control of general linear multiagent systems with antagonistic interactions and communication noises. IEEE Tran. Autom. Control 2019, 64, 2122–2127. [Google Scholar] [CrossRef]
- Zhong, T.; Wang, W.; Lu, S.; Dong, X.; Yang, B. RMCHN: A residual modular cascaded heterogeneous network for noise suppression in DAS-VSP Records. IEEE Geosci. Remote Sens. Lett. 2022, 20, 7500205. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Huang, Z. Numerical study on cavitation-vortex-noise correlation mechanism and dynamic mode decomposition of a hydrofoil. Phys. Fluids 2022, 34, 125105. [Google Scholar] [CrossRef]
- Huang, N.; Chen, Q.; Cai, G.; Xu, D.; Zhang, L.; Zhao, W. Fault diagnosis of bearing in wind turbine gearbox under actual operating conditions driven by limited data with noise labels. IEEE Trans. Instrum. Meas. 2021, 70, 3502510. [Google Scholar] [CrossRef]
- Li, R.; Zhang, H.; Chen, Z.; Yu, N.; Kong, W.; Li, T.; Liu, Y. Denoising method of ground-penetrating radar signal based on independent component analysis with multifractal spectrum. Measurement 2022, 192, 110886. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, X.; Zhu, Z.; Zhai, Z.; Liu, Y. Dual-microphone active noise cancellation paved with doppler assimilation for TADS. Mech. Syst. Signal Process. 2023, 184, 109727. [Google Scholar] [CrossRef]
- He, R.; Zheng, W.S.; Tan, T.N.; Sun, Z.N. Half-quadratic-based iterative minimization for robust sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 261–275. [Google Scholar]
- Favaro, P.; Vidal, R.; Ravichandran, A. A closed form solution to robust subspace estimation and clustering. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1801–1807. [Google Scholar]
- Qin, Y.; Zhang, X.; Shen, L.; Feng, G. Maximum block energy guided robust subspace clustering. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 2652–2659. [Google Scholar] [CrossRef]
- Duy, H.; Dengy, Y.; Xueyz, J.; Mengyz, D.; Zhaoy, Q.; Xuy, Z. Robust online CSI estimation in a complex environment. IEEE trans. Wirel. Commun. 2022, 21, 8322–8336. [Google Scholar]
- Chen, J.H.; Yang, J. Robust subspace segmentation via low-rank representation. IEEE Trans. Cybern. 2014, 44, 1432–1445. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Yan, S.C. Latent low-rank representation for subspace segmentation and feature extraction. In Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1615–1622. [Google Scholar]
- Zhang, H.Y.; Lin, Z.C.; Zhang, C.; Gao, J.B. Robust latent low rank representation for subspace clustering. Neurocomputing 2014, 145, 369–373. [Google Scholar] [CrossRef]
- Ji, P.; Salzmann, M.; Li, H.D. Efficient dense subspace clustering. In Proceedings of the 2014 IEEE Winter Conference on Applications of Computer Vision, Steamboat Springs, CO, USA, 24–26 March 2014; pp. 461–468. [Google Scholar]
- Jing, L.P.; Ng, M.K.; Zeng, T.Y. Dictionary learning-based subspace structure identification in spectral clustering. IEEE Trans. Neural Netw. Learn. 2013, 24, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Chang, W.; Hu, Z.; Li, X. Robust subspace clustering with low-rank structure constraint. IEEE Trans. Knowl. Data Eng. 2022, 34, 1404–1415. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, X.; Liu, Z.; Xue, X.; Wang, Q.; Zheng, S. Robust subspace clustering based on automatic weighted multiple kernel learning. Inf. Sci. 2021, 573, 453–474. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, X.; Feng, X.; Sun, H.; Chen, W.; Liu, Z. Robust subspace clustering based on non-convex low-rank approximation and adaptive kernel. Inf. Sci. 2019, 513, 190–205. [Google Scholar] [CrossRef]
- He, R.; Zhang, Y.Y.; Sun, Z.N.; Yin, Q.Y. Robust subspace clustering with complex noise. IEEE Trans. Image Process. 2015, 24, 4001–4013. [Google Scholar] [PubMed]
- Wang, L.J.; Huang, J.W.; Yin, M.; Cai, R.C.; Hao, Z.F. Block diagonal representation learning for robust subspace clustering. Inf. Sci. 2020, 526, 54–67. [Google Scholar] [CrossRef]
- Nie, F.P.; Wang, H.; Cai, X.; Huang, H.; Ding, C. Robust matrix completion via joint schatten p-norm and lp-norm minimization. In Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, Belgium, 10–13 December 2012; pp. 566–574. [Google Scholar]
- Rockafellar, R.T. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 1974, 12, 268–285. [Google Scholar] [CrossRef]
- Khan, M.; Imtiaz, S.; Parvaiz, G.; Hussain, A.; Bae, J. Integration of Internet-of-Things with blockchain technology to enhance humanitarian logistics performance. IEEE Access 2021, 9, 25422–25436. [Google Scholar] [CrossRef]
- Khan, M.; Parvaiz, G.; Dedahanov, A.; Abdurazzakov, O.; Rakhmonov, D. The Impact of technologies of traceability and transparency in supply chains. Sustainability 2022, 14, 16336. [Google Scholar] [CrossRef]
- Huang, J.; Nie, F.P.; Huang, H.; Ding, C. Robust manifold nonnegative matrix factorization. ACM Trans. Knowl. Discov. Data 2014, 8, 1–21. [Google Scholar] [CrossRef]
- Lin, Z.C.; Chen, M.M.; Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv 2010, arXiv:1009.5055. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Wang, Y.X.; Xu, H. Noisy sparse subspace clustering. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 89–97. [Google Scholar]
- Vinh, N.X.; Epps, J.; Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 2010, 11, 2837–2854. [Google Scholar]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Nemenyi, P.B. Distribution-Free Multiple Comparisons. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1963. [Google Scholar]
- Liu, Y.; Zhang, Z.; Liu, X.; Wang, L.; Xia, X. Efficient image segmentation based on deep learning for mineral image classification. Adv. Powder Technol. 2021, 32, 3885–3903. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Li, D.; Zheng, W.; Yin, L.; Wang, R. Recent advances in pulse-coupled neural networks with applications in image processing. Electronics 2022, 11, 3264. [Google Scholar] [CrossRef]
- Li, M.; Tian, Z.; Du, X.; Yuan, X.; Shan, C.; Guizani, M. Power normalized cepstral robust features of deep neural networks in a cloud computing data privacy protection scheme. Neurocomputing 2023, 518, 165–173. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, H.; Wan, Z. Ore image classification based on improved CNN. Comput. Electr. Eng. 2022, 99, 107819. [Google Scholar] [CrossRef]
- Liu, R.; Wang, X.; Lu, H.; Wu, Z.; Fan, Q.; Li, S.; Jin, X. SCCGAN: Style and characters inpainting based on CGAN. Mob. Netw. Appl. 2021, 26, 3–12. [Google Scholar] [CrossRef]
- Yang, M.; Wang, H.; Hu, K.; Yin, G.; Wei, Z. IA-Net: An inception–attention-module-based network for classifying underwater images from others. IEEE J. Ocean. Eng. 2022, 47, 704–717. [Google Scholar] [CrossRef]
Notations | Descriptions |
---|---|
Ci,: | the i-th row of C |
C:,j | the j-th column of C |
Cij | the (i,j)-th element of C |
CT | the transposed matrix of C |
Tr(C) | the trace of the matrix C |
diag(C) | a vector with its i-th element being the i-th diagonal element of C |
Diag(c) | a diagonal matrix with its i-th diagonal element being i-th element of vector c |
the Frobenius norm(or l2 norm) of C | |
the l2,1 norm of C | |
the l1 norm of C | |
the l∞ norm of C |
Datasets | SSC | LRR | BDR | SBDR | RBDR | OBDR |
---|---|---|---|---|---|---|
D1 | α = 20 | λ = 0.45 | λ = 70 γ = 0.1 | λ = 100 γ = 10 δ = 1 | λ = 1 × 10−4 γ = 1 × 10−4 | λ = 70 γ = 0.1 ρ = 2 |
D2, D4 | α = 100 | λ = 1.45 | λ = 70 γ = 0.1 | λ = 100 γ = 0.1 δ = 1 × 10−5 | λ = 1 × 10−3 γ = 1 × 10−4 | λ = 70 γ = 0.1 ρ = 1.05 |
D3 | α = 20 | λ = 0.85 | λ = 10 γ = 0.1 | λ = 70 γ = 0.1 δ = 0.1 | λ = 1 × 10−4 γ = 1 × 10−5 | λ = 10 γ = 1 × 10−3 ρ = 1.45 |
Datasets | #Subjects | Noise Level | SSC | LRR | BDR | SBDR | RBDR | OBDR |
---|---|---|---|---|---|---|---|---|
D1 | 2 | Clean | 0.8685 | 0.8955 | 0.9230 | 0.9245 1 | 0.8425 | 0.8965 |
1% | 0.6355 | 0.8955 | 0.6715 | 0.8465 | 0.9230 | 0.8910 | ||
3% | 0.5566 | 0.7085 | 0.5110 | 0.5115 | 0.6945 | 0.8805 | ||
5% | 0.5090 | 0.5105 | 0.5090 | 0.5120 | 0.6945 | 0.8645 | ||
10% | 0.5735 | 0.5185 | 0.5720 | 0.5180 | 0.6870 | 0.6975 | ||
4 | Clean | 0.6420 | 0.7368 | 0.7712 | 0.7548 | 0.6202 | 0.7560 | |
1% | 0.6515 | 0.7232 | 0.6222 | 0.6352 | 0.6020 | 0.7183 | ||
3% | 0.5735 | 0.6038 | 0.6153 | 0.6295 | 0.5453 | 0.6358 | ||
5% | 0.5623 | 0.5968 | 0.6095 | 0.6213 | 0.4370 | 0.5930 | ||
10% | 0.3640 | 0.5777 | 0.4040 | 0.5590 | 0.2892 | 0.5767 | ||
6 | Clean | 0.5712 | 0.6235 | 0.6077 | 0.6437 | 0.6100 | 0.6423 | |
1% | 0.5495 | 0.5528 | 0.5828 | 0.5460 | 0.5828 | 0.6073 | ||
3% | 0.5113 | 0.5465 | 0.5758 | 0.5570 | 0.5758 | 0.5682 | ||
5% | 0.5183 | 0.5368 | 0.5452 | 0.6042 | 0.3832 | 0.5607 | ||
10% | 0.3023 | 0.4640 | 0.2582 | 0.4525 | 0.1840 | 0.5398 | ||
D2 | 10 | Clean | 0.8000 | 0.8760 | 0.8820 | 0.8820 | 0.5470 | 0.8830 |
5 × 5 | 0.7440 | 0.8550 | 0.8590 | 0.8640 | 0.7990 | 0.8700 | ||
8 × 8 | 0.6440 | 0.7800 | 0.7460 | 0.7690 | 0.6150 | 0.7830 | ||
10 × 10 | 0.6480 | 0.7490 | 0.6120 | 0.6030 | 0.4980 | 0.6850 | ||
20 | Clean | 0.7650 | 0.7940 | 0.8135 | 0.8155 | 0.3975 | 0.8350 | |
5 × 5 | 0.6660 | 0.7680 | 0.7835 | 0.7950 | 0.7070 | 0.8220 | ||
8 × 8 | 0.6150 | 0.6910 | 0.6375 | 0.6560 | 0.5090 | 0.6905 | ||
10 × 10 | 0.5935 | 0.6020 | 0.5085 | 0.5130 | 0.4205 | 0.5625 | ||
30 | Clean | 0.7307 | 0.7903 | 0.8143 | 0.8370 | 0.2423 | 0.8543 | |
5 × 5 | 0.6370 | 0.7627 | 0.7913 | 0.7970 | 0.6747 | 0.8317 | ||
8 × 8 | 0.5840 | 0.6530 | 0.6233 | 0.6670 | 0.4827 | 0.6923 | ||
10 × 10 | 0.5850 | 0.6107 | 0.5047 | 0.5363 | 0.4120 | 0.5857 | ||
D3 | 3 | Clean | 0.6495 | 0.9638 | 0.9664 | 0.9303 | 0.3327 | 0.9824 |
10% | 0.6489 | 0.4898 | 0.7495 | 0.8059 | 0.3221 | 0.8729 | ||
20% | 0.6101 | 0.4394 | 0.7330 | 0.7479 | 0.2466 | 0.7947 | ||
30% | 0.5681 | 0.3351 | 0.6628 | 0.6016 | 0.1889 | 0.6686 | ||
5 | Clean | 0.5962 | 0.7163 | 0.7987 | 0.7941 | 0.4210 | 0.8687 | |
10% | 0.5300 | 0.6069 | 0.5966 | 0.7050 | 0.3210 | 0.7622 | ||
20% | 0.4206 | 0.4287 | 0.5572 | 0.5841 | 0.2567 | 0.5962 | ||
30% | 0.3859 | 0.3087 | 0.4563 | 0.5222 | 0.2212 | 0.5269 | ||
8 | Clean | 0.5115 | 0.7094 | 0.8687 | 0.9127 | 0.2882 | 0.8468 | |
10% | 0.5626 | 0.6160 | 0.6409 | 0.7411 | 0.2511 | 0.7568 | ||
20% | 0.4495 | 0.5039 | 0.6149 | 0.7000 | 0.1889 | 0.7080 | ||
30% | 0.4102 | 0.4127 | 0.5564 | 0.6221 | 0.1876 | 0.6268 | ||
D4 | 10 | 0.5880 | 0.2621 | 0.6580 | 0.6511 | 0.5315 | 0.6905 | |
20 | 0.6003 | 0.3285 | 0.5796 | 0.6121 | 0.4762 | 0.6188 | ||
30 | 0.5682 | 0.3562 | 0.5802 | 0.6000 | 0.4935 | 0.6062 |
Datasets | #Subjects | Noise Level | SSC | LRR | BDR | SBDR | RBDR | OBDR |
---|---|---|---|---|---|---|---|---|
D1 | 2 | Clean | 0.4991 | 0.6078 | 0.6707 | 0.7173 2 | 0.5649 | 0.6242 |
1% | 0.2302 | 0.5919 | 0.2876 | 0.5840 | 0.5528 | 0.6063 | ||
3% | 0.0858 | 0.3252 | 0.0066 | 0.0066 | 0.3298 | 0.5594 | ||
5% | 0.0047 | 0.0053 | 0.0047 | 0.0047 | 0.3259 | 0.4863 | ||
10% | 0.0649 | 0.0051 | 0.0044 | 0.0048 | 0.2860 | 0.2366 | ||
4 | Clean | 0.4154 | 0.5842 | 0.6133 | 0.6821 | 0.4849 | 0.5507 | |
1% | 0.5702 | 0.5688 | 0.5534 | 0.6065 | 0.4822 | 0.5292 | ||
3% | 0.5128 | 0.4777 | 0.5283 | 0.5803 | 0.3456 | 0.4590 | ||
5% | 0.4768 | 0.4641 | 0.5100 | 0.5631 | 0.1989 | 0.4442 | ||
10% | 0.0947 | 0.4222 | 0.4024 | 0.4744 | 0.0503 | 0.4182 | ||
6 | Clean | 0.4255 | 0.5589 | 0.5623 | 0.6533 | 0.5623 | 0.5774 | |
1% | 0.5468 | 0.5047 | 0.5325 | 0.6008 | 0.5325 | 0.5258 | ||
3% | 0.4859 | 0.4876 | 0.5037 | 0.5662 | 0.5037 | 0.4841 | ||
5% | 0.4844 | 0.4742 | 0.4644 | 0.5883 | 0.2605 | 0.4658 | ||
10% | 0.1254 | 0.3832 | 0.1475 | 0.4651 | 0.0221 | 0.4379 | ||
D2 | 10 | Clean | 0.8662 | 0.8976 | 0.8952 | 0.9047 | 0.6324 | 0.9176 |
5 × 5 | 0.7726 | 0.8839 | 0.8793 | 0.8812 | 0.8229 | 0.8958 | ||
8 × 8 | 0.6804 | 0.7917 | 0.7819 | 0.7981 | 0.6242 | 0.8008 | ||
10 × 10 | 0.6564 | 0.7493 | 0.6346 | 0.6259 | 0.5225 | 0.6957 | ||
20 | Clean | 0.8571 | 0.8732 | 0.8821 | 0.8941 | 0.5541 | 0.9009 | |
5 × 5 | 0.7643 | 0.8439 | 0.8635 | 0.8761 | 0.7861 | 0.8840 | ||
8 × 8 | 0.7135 | 0.7644 | 0.7282 | 0.7479 | 0.6246 | 0.7646 | ||
10 × 10 | 0.6943 | 0.6954 | 0.6264 | 0.6342 | 0.5572 | 0.6548 | ||
30 | Clean | 0.8561 | 0.8829 | 0.9023 | 0.9144 | 0.4277 | 0.9221 | |
5 × 5 | 0.7745 | 0.8543 | 0.8813 | 0.8895 | 0.7913 | 0.8989 | ||
8 × 8 | 0.7281 | 0.7602 | 0.7459 | 0.7766 | 0.6387 | 0.7900 | ||
10 × 10 | 0.7228 | 0.7295 | 0.6626 | 0.6805 | 0.5974 | 0.7046 | ||
D3 | 3 | Clean | 0.4188 | 0.8712 | 0.8130 | 0.4870 | 0.2130 | 0.8851 |
10% | 0.4008 | 0.2657 | 0.5454 | 0.3702 | 0.2454 | 0.6236 | ||
20% | 0.3573 | 0.1741 | 0.4949 | 0.3082 | 0.1800 | 0.5637 | ||
30% | 0.3126 | 0.0200 | 0.4427 | 0.3215 | 0.1042 | 0.3843 | ||
5 | Clean | 0.4224 | 0.7805 | 0.5714 | 0.6398 | 0.3714 | 0.8190 | |
10% | 0.4703 | 0.5853 | 0.4749 | 0.4872 | 0.2749 | 0.5723 | ||
20% | 0.3817 | 0.3917 | 0.4856 | 0.4606 | 0.1856 | 0.4908 | ||
30% | 0.3463 | 0.2234 | 0.4470 | 0.4507 | 0.1470 | 0.4109 | ||
8 | Clean | 0.4420 | 0.6417 | 0.5438 | 0.7066 | 0.2545 | 0.5757 | |
10% | 0.5266 | 0.5351 | 0.4895 | 0.5647 | 0.2372 | 0.5979 | ||
20% | 0.4449 | 0.4240 | 0.4523 | 0.5982 | 0.1675 | 0.4959 | ||
30% | 0.3917 | 0.3253 | 0.4420 | 0.4658 | 0.1420 | 0.5457 | ||
D4 | 10 | 0.6362 | 0.3120 | 0.6299 | 0.6413 | 0.5500 | 0.6360 | |
20 | 0.6810 | 0.5065 | 0.6500 | 0.6488 | 0.5121 | 0.6541 | ||
30 | 0.7030 | 0.5542 | 0.6741 | 0.6760 | 0.5935 | 0.6912 |
SSC | LRR | BDR | SBDR | RBDR | OBDR | p-Value | ||
---|---|---|---|---|---|---|---|---|
ACC | W/T/L | 0/0/42 | 6/0/36 | 1/1/40 | 5/0/37 | 1/1/40 | 28/0/14 3 | |
Av. ranks | 4.65 | 3.65 | 3.33 | 2.73 | 5.24 | 1.50 | 1.0 × 10−21 | |
NMI | W/T/L | 2/0/40 | 4/0/38 | 2/0/40 | 14/0/28 | 1/0/41 | 19/0/23 | |
Av. ranks | 4.12 | 3.55 | 3.52 | 2.42 | 5.20 | 2.19 | 1.2 × 10−14 |
SSC | LRR | BDR | SBDR | RBDR | ||
---|---|---|---|---|---|---|
ACC | LRR | 0.0729 | - | - | - | - |
BDR | 0.0153 | 0.9952 | - | - | - | |
SBDR | 3.4 × 10−5 | 0.3353 | 0.6725 | - | - | |
RBDR | 0.7094 | 0.0005 | 4.5 × 10−5 | 1.1 × 10−8 | - | |
OBDR | 2.0 × 10−13 | 7.8 × 10−6 | 0.0001 | 0.0319 | 7.1 × 10−14 | |
NMI | LRR | 0.7273 | - | - | - | - |
BDR | 0.6911 | 1.0000 | - | - | - | |
SBDR | 0.0004 | 0.0623 | 0.0729 | - | - | |
RBDR | 0.0849 | 0.0007 | 0.0006 | 1.3 × 10−10 | - | |
OBDR | 3.4 × 10−5 | 0.0114 | 0.0139 | 0.9938 | 2.5 × 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Xie, Z.; Wang, L. Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets. Electronics 2023, 12, 1249. https://doi.org/10.3390/electronics12051249
Li Q, Xie Z, Wang L. Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets. Electronics. 2023; 12(5):1249. https://doi.org/10.3390/electronics12051249
Chicago/Turabian StyleLi, Qiang, Ziqi Xie, and Lihong Wang. 2023. "Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets" Electronics 12, no. 5: 1249. https://doi.org/10.3390/electronics12051249
APA StyleLi, Q., Xie, Z., & Wang, L. (2023). Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets. Electronics, 12(5), 1249. https://doi.org/10.3390/electronics12051249