Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models
Abstract
:1. Introduction
- We propose a knowledge distillation framework that can fully extract the knowledge of the multimodal teacher model and transfer it to the unimodal student model, improving the segmentation performance of the student model.
- We devise a novel Cascade Region Attention Distillation (CRAD) module to construct feature region similarity through label masks, distill the region feature information of the teacher model and transfer it to the student model, and improve the segmentation accuracy of the student model.
- We validate our framework with extensive experiments on the BraTS 2018 dataset, demonstrating the effectiveness of the proposed distillation framework and achieving state-of-the-art segmentation performance in unimodal scenarios.
2. Methodology
2.1. Segmentation Map Distillation
2.2. Cascade Region Attention Distillation
2.3. Objective Function
3. Experimental Results
3.1. Dataset
3.2. Implementation Details
3.3. Evaluation Metric
3.4. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claus, E.B.; Walsh, K.M.; Wiencke, J.K.; Molinaro, A.M.; Wiemels, J.L.; Schildkraut, J.M.; Bondy, M.L.; Berger, M.; Jenkins, R.; Wrensch, M. Survival and low-grade glioma: The emergence of genetic information. Neurosurg. Focus 2015, 38, E6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Yang, B.; Xiao, Y.; Liu, S.; Liu, M.; Yin, L.; Zheng, W. Iterative reconstruction of low-dose CT based on differential sparse. Biomed. Signal Process. Control 2023, 79, 104204. [Google Scholar] [CrossRef]
- Yan, J.; Chen, S.; Zhang, Y.; Li, X. Neural architecture search for compressed sensing magnetic resonance image reconstruction. Comput. Med. Imaging Graph. 2020, 85, 101784. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Hong, Y.; Liu, J. Aggregation-and-Attention Network for brain tumor segmentation. BMC Med. Imaging 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Zhou, C.; Ding, C.; Lu, Z.; Wang, X.; Tao, D. One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; pp. 637–645. [Google Scholar]
- Wang, Y.; Zhang, Y.; Hou, F.; Liu, Y.; Tian, J.; Zhong, C.; Zhang, Y.; He, Z. Modality-pairing learning for brain tumor segmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Lima, Peru, 4 October 2020; pp. 230–240. [Google Scholar]
- Maier, O.; Menze, B.H.; von der Gablentz, J.; Häni, L.; Heinrich, M.P.; Liebrand, M.; Winzeck, S.; Basit, A.; Bentley, P.; Chen, L.; et al. ISLES 2015—A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med. Image Anal. 2017, 35, 250–269. [Google Scholar] [CrossRef] [Green Version]
- Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ayed, I.B. HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans. Med. Imaging 2018, 38, 1116–1126. [Google Scholar] [CrossRef] [Green Version]
- Tseng, K.L.; Lin, Y.L.; Hsu, W.; Huang, C.Y. Joint sequence learning and cross-modality convolution for 3D biomedical segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6393–6400. [Google Scholar]
- Yu, B.; Zhou, L.; Wang, L.; Yang, W.; Yang, M.; Bourgeat, P.; Fripp, J. Learning sample-adaptive intensity lookup table for brain tumor segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; pp. 216–226. [Google Scholar]
- Jia, H.; Xia, Y.; Cai, W.; Huang, H. Learning high-resolution and efficient non-local features for brain glioma segmentation in MR images. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; pp. 480–490. [Google Scholar]
- Chen, C.; Dou, Q.; Jin, Y.; Liu, Q.; Heng, P.A. Learning with privileged multimodal knowledge for unimodal segmentation. IEEE Trans. Med. Imaging 2021, 41, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Tulder, G.V.; Bruijne, M.D. Why does synthesized data improve multi-sequence classification? In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 531–538. [Google Scholar]
- Jog, A.; Carass, A.; Roy, S.; Pham, D.L.; Prince, J.L. Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 2017, 35, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Ben-Cohen, A.; Klang, E.; Raskin, S.P.; Soffer, S.; Ben-Haim, S.; Konen, E.; Amitai, M.M.; Greenspan, H. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng. Appl. Artif. Intell. 2019, 78, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Zhou, L.; Wang, L.; Fripp, J.; Bourgeat, P. 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 626–630. [Google Scholar]
- Havaei, M.; Guizard, N.; Chapados, N.; Bengio, Y. Hemis: Hetero-modal image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 469–477. [Google Scholar]
- Dorent, R.; Joutard, S.; Modat, M.; Ourselin, S.; Vercauteren, T. Hetero-modal variational encoder-decoder for joint modality completion and segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, China, 13–17 October 2019; pp. 74–82. [Google Scholar]
- Mehta, R.; Arbel, T. RS-Net: Regression-segmentation 3D CNN for synthesis of full resolution missing brain MRI in the presence of tumours. In Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging, Granada, Spain, 16 September 2018; pp. 119–129. [Google Scholar]
- Hu, M.; Maillard, M.; Zhang, Y.; Ciceri, T.; La Barbera, G.; Bloch, I.; Gori, P. Knowledge distillation from multi-modal to mono-modal segmentation networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 4–8 October 2020; pp. 772–781. [Google Scholar]
- Lopez-Paz, D.; Bottou, L.; Schölkopf, B.; Vapnik, V. Unifying distillation and privileged information. arXiv 2015, arXiv:1511.03643. [Google Scholar]
- Vapnik, V.; Vashist, A. A new learning paradigm: Learning using privileged information. Neural Netw. 2009, 22, 544–557. [Google Scholar] [CrossRef]
- Vapnik, V.; Izmailov, R. Learning using privileged information: Similarity control and knowledge transfer. J. Mach. Learn. Res. 2015, 16, 2023–2049. [Google Scholar]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531. [Google Scholar]
- He, T.; Shen, C.; Tian, Z.; Gong, D.; Sun, C.; Yan, Y. Knowledge adaptation for efficient semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 578–587. [Google Scholar]
- Liu, Y.; Chen, K.; Liu, C.; Qin, Z.; Luo, Z.; Wang, J. Structured knowledge distillation for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2604–2613. [Google Scholar]
- Qin, D.; Bu, J.J.; Liu, Z.; Shen, X.; Zhou, S.; Gu, J.J.; Wang, Z.H.; Wu, L.; Dai, H.F. Efficient medical image segmentation based on knowledge distillation. IEEE Trans. Med. Imaging 2021, 40, 3820–3831. [Google Scholar] [CrossRef]
- Zou, K.H.; Warfield, S.K.; Bharatha, A.; Tempany, C.M.; Kaus, M.R.; Haker, S.J.; Wells III, W.M.; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index1: Scientific reports. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Wang, Y.; Zhang, Y.; Liu, Y.; Lin, Z.; Tian, J.; Zhong, C.; Shi, Z.; Fan, J.; He, Z. Acn: Adversarial co-training network for brain tumor segmentation with missing modalities. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 October–1 November 2021; pp. 410–420. [Google Scholar]
Modalities | ET | TC | WT | Average | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flair | T1 | T1ce | T2 | U-HeMIS | U-HVED | Ours | U-HeMIS | U-HVED | Ours | U-HeMIS | U-HVED | Ours | U-HeMIS | U-HVED | Ours |
• | ∘ | ∘ | ∘ | 11.78 | 23.80 | 47.37 | 26.06 | 57.90 | 72.94 | 52.48 | 84.39 | 88.60 | 30.11 | 55.36 | 69.64 |
∘ | • | ∘ | ∘ | 10.16 | 8.60 | 48.51 | 37.39 | 33.90 | 71.21 | 57.62 | 49.51 | 79.78 | 35.06 | 30.67 | 66.50 |
∘ | ∘ | • | ∘ | 62.02 | 57.64 | 78.51 | 65.29 | 59.59 | 86.40 | 61.53 | 53.62 | 80.19 | 62.95 | 56.95 | 81.70 |
∘ | ∘ | ∘ | • | 25.63 | 22.82 | 48.33 | 57.20 | 54.67 | 68.17 | 80.96 | 79.83 | 83.51 | 54.60 | 52.44 | 66.67 |
Modalities | ET | TC | WT | Average | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Flair | T1 | T1ce | T2 | KD-Net | ACN | Ours | KD-Net | ACN | Ours | KD-Net | ACN | Ours | KD-Net | ACN | Ours |
• | ∘ | ∘ | ∘ | 40.99 | 42.77 | 47.37 | 65.97 | 67.72 | 72.94 | 85.14 | 87.30 | 88.60 | 64.03 | 65.93 | 69.64 |
∘ | • | ∘ | ∘ | 39.87 | 41.52 | 48.51 | 70.02 | 71.18 | 71.21 | 77.28 | 79.34 | 79.78 | 62.39 | 64.01 | 66.50 |
∘ | ∘ | • | ∘ | 75.32 | 78.07 | 78.51 | 81.89 | 84.18 | 86.40 | 76.79 | 80.52 | 80.19 | 78.00 | 80.92 | 81.70 |
∘ | ∘ | ∘ | • | 39.04 | 42.98 | 48.33 | 66.01 | 67.94 | 68.17 | 82.32 | 85.55 | 83.51 | 62.46 | 65.49 | 66.67 |
Model | ET | TC | WT | Average | |||
---|---|---|---|---|---|---|---|
Baseline (Flair) | ✓ | 39.84 | 62.36 | 84.08 | 62.09 | ||
Teacher | ✓ | 73.46 | 81.94 | 89.63 | 81.68 | ||
✓ | ✓ | 44.87 | 67.18 | 88.72 | 66.92 | ||
Ours (Flair) | ✓ | ✓ | 45.67 | 68.46 | 86.50 | 66.88 | |
✓ | ✓ | ✓ | 47.37 | 72.94 | 88.60 | 69.64 |
Model | Loss | ET | TC | WT | Average |
---|---|---|---|---|---|
Ours (Flair) | 45.67 | 68.46 | 86.50 | 66.88 | |
Ours (Flair) | 41.65 | 65.49 | 86.62 | 64.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, F.; Shen, C.; Wang, X. Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics 2023, 12, 1516. https://doi.org/10.3390/electronics12071516
Xiong F, Shen C, Wang X. Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics. 2023; 12(7):1516. https://doi.org/10.3390/electronics12071516
Chicago/Turabian StyleXiong, Feng, Chuyun Shen, and Xiangfeng Wang. 2023. "Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models" Electronics 12, no. 7: 1516. https://doi.org/10.3390/electronics12071516
APA StyleXiong, F., Shen, C., & Wang, X. (2023). Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics, 12(7), 1516. https://doi.org/10.3390/electronics12071516