Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases
Abstract
:1. Introduction
- Enhanced all images using overlapping filters on average and Laplacian filters to produce high-quality images.
- Extracted texture features using LBP and GLCM algorithms, combined all features into feature vectors, and classified them using ANN and FFNN networks.
- Adjusted and modified the parameters of CNN models to extract deep feature maps for highly accurate diagnostic performance.
- Applied hybrid techniques, including two parts of CNN models for extracting deep features and SVM for classifying deep features to obtain highly efficient diagnostic performance.
- Developed high-performance diagnostic systems for diagnosing microscopic blood sample types for early detection of WBC diseases to help hematologists in decision-making.
2. Related Work
3. Materials and Methodology
3.1. Description of the Dataset
3.2. Average and Laplacian Filters
3.3. Neural Network Algorithm
3.3.1. Adopted Region Growth Algorithm (Segmentation)
- , where m is the number of the region;
- ;
- ;
3.3.2. Morphological Operation
3.3.3. Feature Extraction
3.3.4. Classification
3.4. Convolutional Neural Networks (CNNs)
3.5. Hybrid of CNN Models and SVM
4. Experimental Result
4.1. Splitting Dataset
4.2. Evaluation Metrics
4.3. Results of Neural Network Algorithms
4.3.1. Performance Analysis
4.3.2. Gradient
4.3.3. Regression
4.3.4. Receiver Operating Characteristic (ROC)
4.3.5. Confusion Matrix
4.4. Results of Neural Network Algorithms
4.5. Results of the Hybrid CNN Models with the SVM Algorithm
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuan, D.H.; Wu, C.C.; Su, W.Y.; Huang, N.T. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping. Sci. Rep. 2018, 8, 15345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hafiz, F.; Al-Megren, S.; Kurdi, H. Red blood cell segmentation by thresholding and Canny detector. Procedia Comput. Sci. 2018, 141, 327–334. [Google Scholar] [CrossRef]
- van der Meijden, P.E.J.; Heemskerk, J.W.M. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2018, 16, 166–179. [Google Scholar] [CrossRef]
- Rahadi, I.; Choodoung, M.; Choodoung, A. Red blood cells and white blood cells detection by image processing. J. Phys. Conf. Ser. 2020, 1539, 012025. [Google Scholar] [CrossRef]
- Veronelli, A.; Laneri, M.; Ranieri, R.; Koprivec, D.; Vardaro, D.; Paganelli, M.; Folli, F.; Pontiroli, A.E. White Blood Cells in Obesity and Diabetes Effects of weight loss and normalization of glucose metabolism. Diabetes Care 2004, 27, 2501–2502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.S.; Shofer, F.S.; Seidel, J.S.; Baren, J.M. Significance of extreme leukocytosis in the evaluation of febrile children. Pediatr. Infect. Dis. J. 2005, 24, 627–630. [Google Scholar] [CrossRef]
- Nohynek, H.; Valkeila, E.; Leinonen, M.; Juhani, E. Erythrocyte sedimentation rate, white blood cell count and serum C-reactive protein in assessing etiologic diagnosis of acute lower respiratory infections in children. Pediatr. Infect. Dis. J. 1995, 14, 484–490. [Google Scholar] [CrossRef]
- Tsukahara, T.; Yaguchi, A.; Horiuchi, Y. Significance of Monocytosis in Varicella and Herpes Zoster. J. Dermatol. 1992, 19, 94–98. [Google Scholar] [CrossRef]
- Kovalszki, A.; Weller, P.F. Eosinophilia. Prim Care 2016, 43, 607. [Google Scholar] [CrossRef] [Green Version]
- Tomari, R.; Zakaria, W.N.W.; Jamil, M.M.A.; Nor, F.M.; Fuad, N.F.N. Computer Aided System for Red Blood Cell Classification in Blood Smear Image. Procedia Comput. Sci. 2014, 42, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Reta, C.; Altamirano, L.; Gonzalez, J.A.; Diaz-Hernandez, R.; Peregrina, H.; Olmos, I.; Alonso, J.E.; Lobato, R. Segmentation and Classification of Bone Marrow Cells Images Using Contextual Information for Medical Diagnosis of Acute Leukemias. PLoS ONE 2015, 10, e0130805. [Google Scholar] [CrossRef] [Green Version]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear images. Multimed. Tools Appl. 2019, 78, 17879–17898. [Google Scholar] [CrossRef]
- Arslan, S.; Ozyurek, E.; Gunduz-Demir, C. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. Cytom. Part A 2014, 85, 480–490. [Google Scholar] [CrossRef]
- Hiremath, P.S.; Bannigidad, P.; Geeta, S. Automated identification and classification of white blood cells (leukocytes) in digital microscopic images. IJCA 2010, 2, 59–63. [Google Scholar]
- Rezatofighi, S.H.; Soltanian-Zadeh, H. Automatic recognition of five types of white blood cells in peripheral blood. Comput. Med. Imaging Graph. 2011, 35, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.C.; Hung, K.D.; Chan, Y.K. A computer assisted method for leukocyte nucleus segmentation and recognition in blood smear images. J. Syst. Softw. 2012, 85, 2104–2118. [Google Scholar] [CrossRef]
- Nazlibilek, S.; Karacor, D.; Ercan, T.; Sazli, M.H.; Kalender, O.; Ege, Y. Automatic segmentation, counting, size determination and classification of white blood cells. Measurement 2014, 55, 58–65. [Google Scholar] [CrossRef]
- Livieris, I.E.; Pintelas, E.; Kanavos, A.; Pintelas, P. Identification of blood cell subtypes from images using an improved SSL algorithm. Biomed. J. Sci. Tech. Res. 2018, 9, 6923–6929. [Google Scholar] [CrossRef]
- Lippeveld, M.; Knill, C.; Ladlow, E.; Fuller, A.; Michaelis, L.J.; Saeys, Y.; Filby, A.; Peralta, D. Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry. Cytom. Part A 2020, 97, 308–319. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, A.Y.; Huang, M.; Ibrahim, A.K.; Zhuang, H.; Ali, A.M. Classification of White Blood Cells with PatternNet-fused Ensemble of Convolutional Neural Networks (PECNN). In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2018, Louisville, KY, USA, 6–8 December 2018; IEEE: New York, NY, USA, 2019; pp. 325–330. [Google Scholar] [CrossRef]
- Ahmed, N.; Yigit, A.; Isik, Z.; Alpkocak, A. Identification of Leukemia Subtypes from Microscopic Images Using Convolutional Neural Network. Diagnostics 2019, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Goutam, D.; Sailaja, S. Classification of acute myelogenous leukemia in blood microscopic images using supervised classifier. In Proceedings of the 2015 IEEE International Conference on Engineering and Technology, ICETECH 2015, Coimbatore, India, 20 March 2015; IEEE: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Rawat, J.; Singh, A.; HS, B.; Virmani, J.; Devgun, J.S. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern. Biomed. Eng. 2017, 37, 637–654. [Google Scholar] [CrossRef]
- Rawat, J.; Singh, A.; Bhadauria, H.S.; Virmani, J. Computer Aided Diagnostic System for Detection of Leukemia Using Microscopic Images. Procedia Comput. Sci. 2015, 70, 748–756. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.M.; Kermani, S.; Talebi, A.; Oghli, M.G. Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier. J. Med. Signals Sens. 2015, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Vaghela, H.P.; Modi, H.; Pandya, M.; Potdar, M.B. Leukemia Detection using Digital Image Processing Techniques|Enhanced Reader. Int. J. Appl. Inf. Syst. 2015, 10. [Google Scholar] [CrossRef]
- Blood Cell Images | Kaggle. Available online: https://www.kaggle.com/paultimothymooney/blood-cells/version/6 (accessed on 1 January 2022).
- Senan, E.M.; Abunadi, I.; Jadhav, M.E.; Fati, S.M. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Comput. Math. Methods Med. 2021, 2021, 8500314. [Google Scholar] [CrossRef]
- Tsuchimoto, S.; Shibusawa, S.; Iwama, S.; Hayashi, M.; Okuyama, K.; Mizuguchi, N.; Kato, K.; Ushiba, J. Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity. J. Neurosci. Methods 2021, 353, 109089. [Google Scholar] [CrossRef]
- Abunadi, I.; Senan, E.M. Deep Learning and Machine Learning Techniques of Diagnosis Dermoscopy Images for Early Detection of Skin Diseases. Electronics 2021, 10, 3158. [Google Scholar] [CrossRef]
- Mishra, S.; Majhi, B.; Sa, P.K.; Sharma, L. Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection. Biomed. Signal Process. Control. 2017, 33, 272–280. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E. Techniques for the Detection of Skin Lesions in PH2 Dermoscopy Images Using Local Binary Pattern (LBP). In Communications in Computer and Information Science, Proceedings of the Third International Conference Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2020, Aurangabad, India, 3–4 January 2020; Santosh, K.C., Gawali, B., Eds.; Springer: Singapore, 2021; Volume 1381, pp. 14–25. [Google Scholar] [CrossRef]
- Roshni, T.; Jha, M.K.; Drisya, J. Neural network modeling for groundwater-level forecasting in coastal aquifers. Neural Comput. Appl. 2020, 32, 12737–12754. [Google Scholar] [CrossRef]
- Senan, E.M.; Alzahrani, A.; Alzahrani, M.Y.; Alsharif, N.; Aldhyani, T.H.H. Automated Diagnosis of Chest X-Ray for Early Detection of COVID-19 Disease. Comput. Math. Methods Med. 2021, 2021, 6919483. [Google Scholar] [CrossRef]
- Senan, E.M.; Alsaade, F.W.; Al-Mashhadani, M.I.A.; Aldhyani, T.H.H.; Al-Adhaileh, M.H. Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning. J. Appl. Sci. Eng. 2021, 24, 323–329. [Google Scholar] [CrossRef]
- Ouyang, N.; Wang, W.; Ma, L.; Wang, Y.; Chen, Q.; Yang, S.; Xie, J.; Su, S.; Cheng, Y.; Cheng, Q.; et al. Diagnosing acute promyelocytic leukemia by using convolutional neural network. Clin. Chim. Acta 2021, 512, 1–6. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Wu, P.; Yin, Y.; Liu, S. A complex junction recognition method based on GoogLeNet model. Trans. GIS 2020, 24, 1756–1778. [Google Scholar] [CrossRef]
- Al-Adhaileh, M.H.; Senan, E.M.; Alsaade, F.W.; Aldhyani, T.H.H.; Alsharif, N.; Alqarni, A.A.; Uddin, M.I.; Alzahrani, M.Y.; Alzain, E.D.; Jadhav, M.E. Deep Learning Algorithms for Detection and Classification of Gastrointestinal Diseases. Complexity 2021, 2021, 6170416. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Senan, E.M.; Rassem, T.H.; Makbol, N.M.; Alanazi, A.A.; Al-Mekhlafi, Z.G.; Almurayziq, T.S.; Ghaleb, F.A. Multi-Method Analysis of Medical Records and MRI Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on Deep Learning and Hybrid Methods. Electronics 2021, 10, 2860. [Google Scholar] [CrossRef]
- Senan, E.M.; Jadhav, M.E.; Kadam, A. Classification of PH2 Images for Early Detection of Skin Diseases. In Proceedings of the 2021 6th International Conference for Convergence in Technology, Maharashtra, India, 2–4 April 2021. [Google Scholar] [CrossRef]
- Ghaleb Al-Mekhlafi, Z.; Mohammed Senan, E.; Sulaiman Alshudukhi, J.; Abdulkarem Mohammed, B. Hybrid Techniques for Diagnosing Endoscopy Images for Early Detection of Gastrointestinal Disease Based on Fusion Features. Int. J. Intell. Syst. 2023, 2023, 8616939. [Google Scholar] [CrossRef]
- Mohammed, B.A.; Al-Mekhlafi, Z.G. Optimized Stacking Ensemble Model to Detect Phishing Websites. Communications in Computer and Information Science. In Communications in Computer and Information Science, Proceedings of the Third International Conference, Advances in Cyber Security, ACeS 2021, Penang, Malaysia, 24–25 August 2021; Abdullah, N., Manickam, S., Anbar, M., Eds.; Springer: Singapore, 2021; Volume 1487, pp. 379–388. [Google Scholar] [CrossRef]
- Olayah, F.; Senan, E.M.; Ahmed, I.A.; Awaji, B. AI Techniques of Dermoscopy Image Analysis for the Early Detection of Skin Lesions Based on Combined CNN Features. Diagnostics 2023, 13, 1314. [Google Scholar] [CrossRef] [PubMed]
- Al-Mekhlafi, Z.G.; Mohammed, B.A. Using Genetic Algorithms to Optimized Stacking Ensemble Model for Phishing Websites Detection. In Communications in Computer and Information Science, Proceedings of the Third International Conference, Advances in Cyber Security, ACeS 2021, Penang, Malaysia, 24–25 August 2021; Abdullah, N., Manickam, S., Anbar, M., Eds.; Springer: Singapore, 2021; Volume 1487, pp. 447–456. [Google Scholar] [CrossRef]
- Wu, W.; Liao, S.; Lu, Z. White Blood Cells Image Classification Based on Radiomics and Deep Learning. IEEE Access 2022, 10, 124036–124052. [Google Scholar] [CrossRef]
- Kadry, S.; Rajinikanth, V.; Taniar, D.; Damaševičius, R.; Valencia, X.P.B. Automated segmentation of leukocyte from hematological images—A study using various CNN schemes. J. Supercomput. 2022, 78, 6974–6994. [Google Scholar] [CrossRef]
- Baydilli, Y.Y.; Atila, U.; Elen, A. Learn from one data set to classify all–A multi-target domain adaptation approach for white blood cell classification. Comput. Methods Programs Biomed. 2020, 196, 105645. [Google Scholar] [CrossRef]
- Kutlu, H.; Avci, E.; Özyurt, F. White blood cells detection and classification based on regional convolutional neural networks. Med. Hypotheses 2020, 135, 109472. [Google Scholar] [CrossRef]
- Sahlol, A.T.; Kollmannsberger, P.; Ewees, A.A. Efficient classification of white blood cell leukemia with improved swarm optimization of deep features. Sci. Rep. 2020, 10, 2536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chola, C.; Muaad, A.Y.; Bin Heyat, M.B.; Benifa, J.V.B.; Naji, W.R.; Hemachandran, K.; Mahmoud, N.F.; Samee, N.A.; Al-Antari, M.A.; Kadah, Y.M.; et al. BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification. Diagnostics 2022, 12, 2815. [Google Scholar] [CrossRef] [PubMed]
- Bayat, N.; Davey, D.D.; Coathup, M.; Park, J.-H. White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization. Big Data Cogn. Comput. 2022, 6, 122. [Google Scholar] [CrossRef]
- Baydilli, Y.Y.; Atila, Ü. Classification of white blood cells using capsule networks. Comput. Med. Imaging Graph. 2020, 80, 101699. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. 2019, 39, 382–392. [Google Scholar] [CrossRef]
- Cheuque, C.; Querales, M.; León, R.; Salas, R.; Torres, R. An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. Diagnostics 2022, 12, 248. [Google Scholar] [CrossRef] [PubMed]
Dataset | ALL_IDB1 | ||
---|---|---|---|
Phase | 80% for Training with Validation (80:20%) | 20% for Testing | |
Classes | Training (80%) | Validation (20%) | |
Eosinophils | 2005 | 501 | 627 |
Lymphocytes | 1989 | 497 | 622 |
Monocytes | 1981 | 495 | 619 |
Neutrophils | 2030 | 507 | 634 |
Measure | ANN | FFNN |
---|---|---|
Accuracy % | 91.6 | 93.6 |
Precision % | 91.58 | 93.66 |
Sensitivity % | 97.08 | 97.79 |
Specificity % | 92.03 | 93.92 |
AUC % | 94.38 | 95.77 |
Options | AlexNet | ResNet-50 | GoogLeNet | ResNet-18 |
---|---|---|---|---|
Training options | adam | adam | adam | adam |
Mini-batch size | 20 | 10 | 20 | 15 |
Max. epochs | 10 | 5 | 4 | 3 |
Initial learn rate | 0.0001 | 0.0001 | 0.0003 | 0.0001 |
Validation frequency | 50 | 5 | 3 | 5 |
Training time (min.) | 43 min 32 s | 2117 min 21 s | 515 min 16 s | 582 min 18 s |
Execution environment | GPU | GPU | GPU | GPU |
Measure | AlexNet | ResNet-50 | GoogLeNet | ResNet-18 |
---|---|---|---|---|
Accuracy % | 98 | 99.3 | 99 | 99.1 |
Precision % | 98.4 | 99.5 | 99.2 | 99 |
Sensitivity % | 98.2 | 99.25 | 99.34 | 99.21 |
Specificity % | 99.25 | 99.75 | 99.5 | 99.75 |
AUC % | 99.74 | 99.99 | 99.95 | 99.98 |
Measure | AlexNet + SVM | ResNet-50 + SVM | GoogLeNet + SVM | ResNet-18 + SVM |
---|---|---|---|---|
Accuracy % | 93.5 | 93.1 | 94.4 | 93.8 |
Precision % | 93.25 | 93.25 | 94.25 | 94 |
Sensitivity % | 93.5 | 93 | 94.5 | 94 |
Sepecificy % | 97.75 | 97.7 | 98.25 | 98 |
AUC % | 98.25 | 99.21 | 99.52 | 99.34 |
Diseases | Neural Networks | CNN | Hybrid | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ANN | FFNN | AlexNet | ResNet-50 | Google-Net | Res-Net-18 | AlexNet with SVM | ResNet-50 with SVM | GoogLeNet with SVM | ResNet-18 with SVM | |
Eosinophils | 91.7 | 93.2 | 94.9 | 97.7 | 98.4 | 97.3 | 88.8 | 89.3 | 89.8 | 87.9 |
Lymphocytes | 90.4 | 90.1 | 99.5 | 100 | 100 | 99.8 | 99.2 | 97.1 | 98.4 | 99.2 |
Monocytes | 93.7 | 96 | 100 | 100 | 100 | 100 | 97.9 | 96.2 | 99 | 98.7 |
Neutrophils | 90.5 | 95.3 | 97.5 | 99.4 | 97.8 | 99.4 | 88.2 | 87.9 | 90.7 | 89.6 |
Previous Research | Accuracy % | Sensitivity % | Specificity % | Precision % | AUC % |
---|---|---|---|---|---|
Wu et al. [45] | 98.8 | 98.23 | 98.83 | 98.68 | 99.9 |
Kadry et al. [46] | 97.44 | 98.94 | 98.42 | - | - |
Baydilli et al. [47] | 98.08 | 95.35 | 98.8 | 95.35 | - |
Kutlu et al. [48] | 97.21 | 89.6 | 96.06 | - | - |
Sahlol et al. [49] | 96.11 | 93 | 95 | - | - |
Chola et al. [50] | 97.67 | 96.51 | 98.83 | - | - |
Bayat et al. [51] | 98.99 | 97.99 | - | - | - |
Baydilli et al. [52] | 96.9 | 92.5 | - | - | - |
Liang et al. [53] | 95.4 | 96.9 | - | - | - |
Cheuque et al. [54] | 98.4 | 98.4 | - | - | - |
Proposed model | 99.3 | 99.25 | 99.75 | 99.3 | 99.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almurayziq, T.S.; Senan, E.M.; Mohammed, B.A.; Al-Mekhlafi, Z.G.; Alshammari, G.; Alshammari, A.; Alturki, M.; Albaker, A. Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases. Electronics 2023, 12, 1853. https://doi.org/10.3390/electronics12081853
Almurayziq TS, Senan EM, Mohammed BA, Al-Mekhlafi ZG, Alshammari G, Alshammari A, Alturki M, Albaker A. Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases. Electronics. 2023; 12(8):1853. https://doi.org/10.3390/electronics12081853
Chicago/Turabian StyleAlmurayziq, Tariq S., Ebrahim Mohammed Senan, Badiea Abdulkarem Mohammed, Zeyad Ghaleb Al-Mekhlafi, Gharbi Alshammari, Abdullah Alshammari, Mansoor Alturki, and Abdullah Albaker. 2023. "Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases" Electronics 12, no. 8: 1853. https://doi.org/10.3390/electronics12081853
APA StyleAlmurayziq, T. S., Senan, E. M., Mohammed, B. A., Al-Mekhlafi, Z. G., Alshammari, G., Alshammari, A., Alturki, M., & Albaker, A. (2023). Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases. Electronics, 12(8), 1853. https://doi.org/10.3390/electronics12081853