An Effective Design Scheme of Single- and Dual-Band Power Dividers for Frequency-Dependent Port Terminations
Abstract
:1. Introduction
2. Proposed Circuit and Design Analysis with Closed-Form Design Equations
2.1. Design Analysis of the Single—Band ITPD
2.1.1. Odd-Mode Design Analysis
2.1.2. Even-Mode Design Analysis
2.2. Design Analysis of the Dual—Band ITPD
2.2.1. Odd-Mode Design Analysis
2.2.2. Even-Mode Design Analysis
3. Case Studies
3.1. Case Study: Frequency Ratios (R)
3.2. Case Study: Impedance Transformation Ratios (K)
3.3. Brief Discussion on Bandwidth Control
4. Fabrication and Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saxena, A.; Hashmi, M.; Banerjee, D.; Chaudhary, M.A. Theory and Design of a Flexible Two-Stage Wideband Wilkinson Power Divider. Electronics 2021, 10, 2168. [Google Scholar] [CrossRef]
- Gomez-Garcia, R.; Ghannouchi, F.M.; Carvalho, N.B.; Luong, H.C. Guest editorial advanced circuits and systems for CR/SDR applications. IEEE Trans. Emerg. Sel. Top. Circuits Syst. 2013, 3, 485–488. [Google Scholar] [CrossRef]
- Al Shamaileh, K.; Dib, N.; Abushamleh, S. A dual-band 1:10 Wilkinson power divider based on multi-T-section characterization of high-impedance transmission lines. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 897–899. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S.; Yadav, A.P.; Kumar, V. A Generic Tri-Band Matching Network. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 316–318. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Y.; Lin, X.Q.; Wu, K. Single-Layer Mode Composite Coplanar Waveguide Dual-Band Filter With Large Frequency Ratio. IEEE Trans. Microw. Theory Tech. 2020, 68, 2320–2330. [Google Scholar] [CrossRef]
- Hallberg, W.; Özen, M.; Kuylenstierna, D.; Buisman, K.; Fager, C. A generalized 3-dB wilkinson power divider/combiner with complex terminations. IEEE Trans. Microw. Theory Tech. 2018, 66, 4497–4506. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S. A coupled-line based L-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider. Prog. Electromagn. Res. C 2014, 55, 95–104. [Google Scholar] [CrossRef]
- Banerjee, D.; Saxena, A.; Hashmi, M.S. A Novel Concept of Virtual Impedance for High Frequency Tri-Band Impedance Matching Networks. IEEE Trans. Circuits Syst. II 2018, 65, 1184–1188. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S.; Ghannouchi, F.M. A Dual-Band Port-Extended Branch-Line Coupler and Mitigation of the Band-Ratio and Power Division Limitations. IEEE Trans. Comp. Manf. Tech. 2017, 7, 1313–1323. [Google Scholar] [CrossRef]
- Nguyen, N.; Ghiotto, A.; Martin, T.; Vilcot, A.; Wu, K.; Vuong, T. A 90° Self-Compensating Slab Air-Filled Substrate Integrated Waveguide Phase Shifter. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019; pp. 580–583. [Google Scholar] [CrossRef]
- Guo, J.; Wu, K. Mode composite waveguide directional coupler. In Proceedings of the 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 6–10 May 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Gupta, R.; Hashmi, M.S. A dual-band impedance transformer for frequency-dependent complex loads incorporating an L-type network. In Proceedings of the 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Xia, B.; Cheng, J.; Wu, L.; Xiong, C.; Mao, J. A new compact power divider based on capacitor central loaded coupled microstrip Line. IEEE Trans. Microw. Theory Tech. 2020, 68, 4249–4256. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Gupta, R.; Maktoomi, M.H.; Hashmi, M.S.; Ghannouchi, F.M. A genaralized multi-frequency impedance matching technique. In Proceedings of the 2016 16th Mediterranean Microwave Symposium (MMS), Abu Dhabi, United Arab Emirates, 14–16 November 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S.; Ghannouchi, F.M. Systematic Design Technique for Dual-Band Branch-Line Coupler Using T- and Pi-Networks and Their Application in Novel Wideband-Ratio Crossover. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 784–795. [Google Scholar] [CrossRef]
- Kim, P.; Chaudhary, G.; Jeong, Y. Analysis and design of an unequal termination impedance power divider with bandpass filtering response. IET Electron. Lett. 2017, 53, 1260–1262. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, Z.; Jiao, L.; Liu, Y. A novel balanced-to-unbalanced complex impedance-transforming in-phase power divider. IEEE Access 2017, 5, 205–213. [Google Scholar] [CrossRef]
- Gupta, R.; Hashmi, M.S. High impedance transforming simplifiedb balun architecture in microstrip technology. Wiley Microw. Opt. Technol. Lett. 2018, 60, 3019–3023. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, Z.; Kong, M.; Jiao, L.; Liu, Y.; Kishk, A.A. Wideband filtering unbalanced-to-balanced independent impedance-transforming power divider with arbitrary power ratio. IEEE Trans. Microw. Theory Tech. 2018, 66, 4482–4496. [Google Scholar] [CrossRef]
- Liu, F.; Lee, J. Design of new dual-band wilkinson power dividers with simple structure and wide isolation. IEEE Trans. Microw. Theory Tech. 2019, 67, 3628–3635. [Google Scholar] [CrossRef]
- Zaidi, A.M.; Beg, M.T.; Kanaujia, B.K.; Mainuddin; Rambabu, K. A compact dual-band out of phase power divider having microstrip compatibility. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 2998–3002. [Google Scholar] [CrossRef]
- Zhang, W.; Ning, Z.; Wu, Y.; Yu, C.; Li, S.; Liu, Y. Dual-band out-of-phase power divider with impedance transformation and wide frequency ratio. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 787–789. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Yu, C.; Li, S.; Wang, W.; Su, M.; Liu, Y. Dual band balanced-to-unbalanced power divider with inherent impedance transformation. Electromagnetics 2017, 37, 127–137. [Google Scholar] [CrossRef]
- Zhuang, Z.; Wu, Y.; Kong, M.; Wang, W.; Liu, Y. Dual-band filtering balanced-to-unbalanced impedance-transforming power divider with high frequency ratio and arbitrary power division. IEEE Access 2018, 6, 12710–12717. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S. A Performance Enhanced Port Extended Dual-Band Wilkinson Power Divider. IEEE Access 2017, 5, 11832–11840. [Google Scholar] [CrossRef]
- Li, Y.; Sim, C.; Luo, Y.; Yang, G. 12-Port 5G massive MIMO antenna array in sub-6ghz mobile handset for LTE bands 42/43/46 applications. IEEE Access 2018, 6, 344–354. [Google Scholar] [CrossRef]
- Li, H.; Miers, Z.T.; Lau, B.K. Design of orthogonal MIMO hand-set antennas based on characteristic mode manipulation at frequency bands below 1 GHz. IEEE Trans. Antennas Propag. 2014, 62, 2756–2766. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, G.; Wang, L.; Wong, K.; Zhao, L. Content placement in cache-enabled sub-6 ghz and millimeter-wave multi-antenna dense small cell networks. IEEE Trans. Wirel. Commun. 2018, 17, 2843–2856. [Google Scholar] [CrossRef]
- Gu, X.; Srinaga, N.N.; Guo, L.; Hemour, S.; Wu, K. Diplexer-based fully passive harmonic transponder for sub-6-ghz 5G-compatible IoT applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 1675–1687. [Google Scholar] [CrossRef]
- Zahra, M.; Kempi, I.; Haarla, J.; Antonov, Y.; Khonsari, Z.; Miilunpalo, T.; Ahmed, N.; Inkinen, J.; Unnikrishnan, V.; Lehtovuori, A.; et al. A 2-5.5 ghz beamsteering receiver IC with 4-element vivaldi antenna array. IEEE Trans. Microw. Theory Tech. 2020, 68, 3852–3860. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Xia, X.; Quan, X.; Liu, D.; Xu, Q.; Pan, W.; Tang, Y.; Kang, K. Multiband user equipment prototype hardware design for 5G communications in sub-6-ghz band. IEEE Trans. Microw. Theory Tech. 2019, 67, 2916–2927. [Google Scholar] [CrossRef]
- Huang, M.; Lin, Y.L.; Ou, J.-H.; Zhang, X.Y.; Lin, Q.W.; Che, W.; Xue, Q. Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming. IEEE Trans. Microw. Theory Tech. 2019, 67, 1974–1984. [Google Scholar] [CrossRef]
- Dhar, S.K.; Sharma, T.; Zhu, N.; Darraji, R.; Mclaren, R.; Holmes, D.G.; Mallette, V.; Ghannouchi, F.M. Input-harmonic-controlled broadband continuous class-F power amplifiers for Sub-6-ghz 5G applications. IEEE Trans. Microw. Theory Tech. 2020, 68, 3120–3133. [Google Scholar] [CrossRef]
- Ahn, H.; Tentzeris, M.M. Complex impedance transformers: Their use in designing various ultracompact and wideband power dividers. IEEE Microw. Mag. 2020, 21, 53–64. [Google Scholar] [CrossRef]
- Nallandhigal, S.N.; Wu, K. Unified and Integrated Circuit Antenna in Front End—A Proof of Concept. IEEE Trans. Microw. Theory Tech. 2019, 67, 347–364. [Google Scholar] [CrossRef]
- Moghaddasi, J.; Wu, K. Millimeter-Wave Multifunction Multiport Interferometric Receiver for Future Wireless Systems. IEEE Trans. Microw. Theory Tech. 2018, 66, 1452–1466. [Google Scholar] [CrossRef]
- Gupta, R.; Gabdrakhimov, B.; Dabarov, A.; Nauryzbayev, G.; Hashmi, M.S. Development and Thorough Investigation of Dual-Band Wilkinson Power Divider for Arbitrary Impedance Environment. IEEE Open J. Ind. Electron. Soc. 2021, 2, 401–409. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Liu, X.; Liu, Y.; Li, S.; Wu, F.; Wu, Y. A three-section dual-band transformer for frequency-dependent complex load impedance. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 611–613. [Google Scholar] [CrossRef]
- Gupta, R.; Hashmi, M.S.; Maktoomi, M.H. An enhanced frequency ratio dual band balun augmented with high impedance transformation. IEEE Trans. Circuits Syst. II Exp. Briefs 2020, 67, 2973–2977. [Google Scholar] [CrossRef]
- Maktoomi, M.A.; Hashmi, M.S.; Ghannouchi, F.M. Improving Load Range of Dual-Band Impedance Matching Networks Using Load-Healing Concept. IEEE Trans. Circuits Syst. II Exp. Briefs 2017, 64, 126–130. [Google Scholar] [CrossRef]
- Monzon, C. A small dual-frequency transformer in two sections. IEEE Trans. Microw. Theory Tech. 2003, 51, 1157–1161. [Google Scholar] [CrossRef]
- Mousavi, S.M.H.; Rahimi, M.S.; Malakooti, S.A.; Afzali, B.; Virdee, B.S. A broadband out-of-phase gysel power divider based on a dual-band circuit with a single fixed isolation resistor. Int. J. RF Microw. Comput.-Aided Eng. 2016, 26, 796–802. [Google Scholar] [CrossRef]
- Ren, X.; Song, K.; Fan, M.; Zhu, Y.; Hu, B. Compact Dual-Band Gysel Power Divider Based on Composite Right- and Left-Handed Transmission Lines. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 82–84. [Google Scholar] [CrossRef]
- Chen, S.; Yu, Y.; Tang, M. Dual-Band Gysel Power Divider with Different Power Dividing Ratios. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 462–464. [Google Scholar] [CrossRef]
Case | r ( = 1 GHz) | k * @ | Load | , | , | , | , | , | , | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2.6 | 0.55 0.42 | 54.14 + j8.6 @ 70.7 + j5.3 @ | 30 | 62.34, 50 | 33.22, 50 | 49.29, 50 | 60, 70 | 108.37, 50 | 93 |
2 | 3 | 20, 8 | 20 + j8 @ 50 + j5 @ | 400 | 94.4, 45 | 65.2, 45 | 28.9, 45 | 30.2, 63 | 60.1, 45 | 71 |
3 | 4.5 | 5, 2 | 20 + j8 @ 50 + j5 @ | 100 | 45.73, 32.73 | 31.93, 32.73 | 20.96, 32.73 | 30.17, 45.76 | 105.51, 32.73 | 86 |
4 | 5 | 2, 2 | 50 @ 50 @ | 100 | 30, 30 | 42.34, 30 | 22.4, 30 | 77, 30 | 110.9, 30 | 120 |
5 | 2 | 10, 10 | 50 @ 50 @ | 500 | 138.8, 60 | 39.5, 60 | 21.9, 60 | 41, 60 | 23.2, 60 | 32 |
6 | NA | 3.12 | 155.9 − j27 @ 155.9 − j27 @ | 50 | 63.6, 69.5 | 32.6, 73.3 | 58.1, 65.5 | 68.7, 13.6 | 38.5, 60 | 50 |
Refs | No. of Bands | Impedance Transformation | Operating Frequencies (GHz) | (dB) at , | (dB) at , | (dB) at , | FBW (%) at , | Size () |
---|---|---|---|---|---|---|---|---|
[13] | single | - | 1.5 | −26 * | −3.27 | −3.28 | 26.8 | 0.023 |
[43] | dual | - | 1.0, 2.0 | <−20 | −3.7 * | −3.7 * | 84.5 | 0.26 |
[44] | dual | - | 2.4, 3.5 | <−20 | −3.94 | −3.77 | 2.9 , 8.6 | 0.095 |
[45] | dual | - | 2.4, 3.5 | <−20 | −3.94 | −3.77 | 10 , 5.5 | 0.122 |
[20] | dual | - | 1, 3.5 | −20.0, −20.3 | −3.28, −3.35 | −3.25, −3.37 | 50 , 15 | 0.023 |
[21] | dual | - | 0.7, 2.6 | <−15 | −3.42, −4.96 | −3.43, −1.94 | 24.3, 8.1 | 0.34 |
[18] | single | real | 1 | −31 | −3.28 | −3.42 | 8 | 0.088 |
[17] | single | complex | 2.0 | −29 | −3.77 | -3.38 | 36 | 0.35 |
[6] | single | complex | 2 | −17.5 | −3.25 | −3.25 * | 16.8 | 0.25 * |
[24] | dual | real | 1, 6.4 | <−30 | −3.45, −4.37 | −3.45, −4.37 | 53, 7.3 | 0.087 * |
[40] | dual | real | 1, 5 | −29, −21 | −3.6, −3.9 | −3.4, −4.1 | 11, 12 | 0.175 |
[37] | dual | real, complex, and FDCL | 1, 2.6 | −31.8, −27.9 | −3.2, −3.6 | −3.2, −3.6 | 16 and 13.1 | 0.106 |
[This work] | single | real, complex, and FDCL | 5.8 | −26.1 | −3.6 | −3.6 | 65.5 | 0.40 |
[This work] | dual | real, complex, and FDCL | 1, 2.6 | −28.9, −27.8 | −3.15, −3.7 | −3.27, −3.65 | 18.2, 17.3 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, R.; Assaad, M.; Chaudhary, M.A.; Hashmi, M. An Effective Design Scheme of Single- and Dual-Band Power Dividers for Frequency-Dependent Port Terminations. Electronics 2023, 12, 1991. https://doi.org/10.3390/electronics12091991
Gupta R, Assaad M, Chaudhary MA, Hashmi M. An Effective Design Scheme of Single- and Dual-Band Power Dividers for Frequency-Dependent Port Terminations. Electronics. 2023; 12(9):1991. https://doi.org/10.3390/electronics12091991
Chicago/Turabian StyleGupta, Rahul, Maher Assaad, Muhammad Akmal Chaudhary, and Mohammad Hashmi. 2023. "An Effective Design Scheme of Single- and Dual-Band Power Dividers for Frequency-Dependent Port Terminations" Electronics 12, no. 9: 1991. https://doi.org/10.3390/electronics12091991
APA StyleGupta, R., Assaad, M., Chaudhary, M. A., & Hashmi, M. (2023). An Effective Design Scheme of Single- and Dual-Band Power Dividers for Frequency-Dependent Port Terminations. Electronics, 12(9), 1991. https://doi.org/10.3390/electronics12091991