Design of a High-Gain Hybrid Slot Antenna Array Based on Bulk Silicon MEMS Process for W-Band Applications
Abstract
:1. Introduction
2. The 4 × 4-Slot Sub-Array Based on Bulk Silicon MEMS Process
2.1. Configuration and Operation Mechanism of the Basic Unit
2.2. Parameter Analysis of the Basic Unit
2.3. The 4 × 4-Slot Sub-Array Based on Bulk Silicon MEMS Process
3. The 8 × 8-Slot Hybrid Antenna Array
3.1. Ridge-Gap Waveguide Feed Network
3.2. Fabrication and Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Hong, W.; Zhang, H.; Wang, G.; Yu, Y.; Jiang, Z.H. An Array Antenna for Both Long- and Medium-Range 77 GHz Automotive Radar Applications. IEEE Trans. Antennas Propag. 2017, 65, 7207–7216. [Google Scholar] [CrossRef]
- Teng, X.; Luo, Y.; Yan, N.; Ma, K. A Cavity-Backed Antenna Using SISL Technology for 77 GHz Band Application. IEEE Trans. Antennas Propag. 2022, 70, 3840–3845. [Google Scholar] [CrossRef]
- Wu, B.; He, L. Multilayered Circular Dielectric Structure SAR Imaging Based on Compressed Sensing for FOD Detection in NDT. IEEE Trans. Instrum. Meas. 2020, 69, 7588–7593. [Google Scholar] [CrossRef]
- Shi, Q.; Wu, J.; Ni, Z.; Lv, X.; Ye, F.; Hou, Q.; Chen, X. A Blast Furnace Burden Surface Deeplearning Detection System Based on Radar Spectrum Restructured by Entropy Weight. IEEE Sens. J. 2021, 21, 7928–7939. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, Z.H.; Yu, C.; Wu, F.; Xu, X.; Hong, W. Low-Profile, Broadband, Dual-Linearly Polarized, and Wide-Angle Millimeter-Wave Antenna Arrays for Ka-Band 5G Applications. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2038–2042. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Y.; Zhao, L.; Huang, G.-L.; Shi, X.; Huang, Q. A Miniaturized Microstrip Antenna Array at 5G Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1671–1675. [Google Scholar] [CrossRef]
- Yang, T.Y.; Hong, W.; Zhang, Y. Wideband Millimeter-Wave Substrate Integrated Waveguide Cavity-Backed Rectangular Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 205–208. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Wang, W.; Liang, X.; Ge, J.; Jin, M.; Wu, W. Broadband Dual-Polarized Waveguide Slot Filtenna Array with Low Cross Polarization and High Efficiency. IEEE Trans. Antennas Propag. 2019, 67, 151–159. [Google Scholar] [CrossRef]
- Li, T.; Meng, H.; Dou, W. Design and Implementation of Dual-Frequency Dual-Polarization Slotted Waveguide Antenna Array for Ka-Band Application. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 1317–1320. [Google Scholar]
- Chen, M.; Fang, X.-C.; Wang, W.; Zhang, H.-T.; Huang, G.-L. Dual-Band Dual-Polarized Waveguide Slot Antenna for SAR Applications. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1719–1723. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Lim, Y.; Yoon, H.-S.; Nam, S. High-Efficiency W-Band Electroforming Slot Array Antenna. IEEE Trans. Antennas Propag. 2015, 63, 1854–1857. [Google Scholar] [CrossRef]
- Kim, D.; Zhang, M.; Hirokawa, J.; Ando, M. Design and Fabrication of a Dual-Polarization Waveguide Slot Array Antenna with High Isolation and High Antenna Efficiency for the 60 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 3019–3027. [Google Scholar] [CrossRef]
- Tomura, T.; Hirokawa, J.; Hirano, T.; Ando, M. A 45° Linearly Polarized Hollow-Waveguide 16 × 16-Slot Array Antenna Covering 71–86 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 5061–5067. [Google Scholar] [CrossRef]
- Sano, M.; Hirokawa, J.; Ando, M. Single-Layer Corporate-Feed Slot Array in the 60-GHz Band Using Hollow Rectangular Coaxial Lines. IEEE Trans. Antennas Propag. 2014, 62, 5068–5076. [Google Scholar] [CrossRef]
- Kim, D.; Hirokawa, J.; Ando, M.; Takeuchi, J.; Hirata, A. 64× 64-Element and 32× 32-Element Slot Array Antennas Using Double-Layer Hollow-Waveguide Corporate-Feed in the 120 GHz Band. IEEE Trans. Antennas Propag. 2014, 62, 1507–1512. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Guo, Y.X.; Liu, Z.G. W-Band Large-Scale High-Gain Planar Integrated Antenna Array. IEEE Trans. Antennas Propag. 2014, 62, 3370–3373. [Google Scholar] [CrossRef]
- Chen, X.-P.; Wu, K.; Han, L.; He, F. Low-Cost High Gain Planar Antenna Array for 60-GHz Band Applications. IEEE Trans. Antennas Propag. 2010, 58, 2126–2129. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, Y.J.; Fan, Y. A Wideband High-Gain High-Efficiency Hybrid Integrated Plate Array Antenna for V-Band Inter-Satellite Links. IEEE Trans. Antennas Propag. 2015, 63, 1225–1233. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Bernardo-Clemente, B.; Herranz, J.I.; Bernardo, B. Full-Metal K-Ka Dual-Band Shared-Aperture Array Antenna Fed by Combined Ridge-Groove Gap Waveguide. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1463–1467. [Google Scholar] [CrossRef]
- Ferrando-Rocher, M.; Herranz-Herruzo, J.I.; Valero-Nogueira, A.; Vila-Jimenez, A. Single-Layer Circularly-Polarized Ka-Band Antenna Using Gap Waveguide Technology. IEEE Trans. Antennas Propag. 2018, 66, 3837–3845. [Google Scholar] [CrossRef]
- Cao, B.; Shi, Y.; Feng, W. W-Band LTCC Circularly Polarized Antenna Array with Mixed U-Type Substrate Integrated Waveguide and Ridge Gap Waveguide Feeding Networks. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2399–2403. [Google Scholar] [CrossRef]
- Cao, B.; Wang, H.; Huang, Y.; Zheng, J. High-Gain L-Probe Excited Substrate Integrated Cavity Antenna Array with LTCC-Based Gap Waveguide Feeding Network for W-Band Application. IEEE Trans. Antennas Propag. 2015, 63, 5465–5474. [Google Scholar] [CrossRef]
- Cao, J.; Wang, H.; Mou, S.; Soothar, P.; Zhou, J. An Air Cavity-Fed Circularly Polarized Magneto-Electric Dipole Antenna Array with Gap Waveguide Technology for mm-Wave Applications. IEEE Trans. Antennas Propag. 2019, 67, 6211–6216. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y.; Zhang, Z.J.; Feng, Z.H. Low-Sidelobe Air-Filled Slot Array Fabricated Using Silicon Micromachining Technology for Millimeter-Wave Application. IEEE Trans. Antennas Propag. 2017, 65, 4067–4074. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Tan, F.Y.; Zhou, M.M.; Fan, Y. Dual-Polarized Wideband Plate Array Antenna with High Polarization Isolation and Low Cross Polarization for D-Band High-Capacity Wireless Application. IEEE Trans. Antennas Propag. 2020, 19, 2023–2027. [Google Scholar] [CrossRef]
- Yao, S.S.; Cheng, Y.J.; Wu, Y.; Fan, Y. Isolation Enhancement for W-Band Coplanar Array Antennas Based on Silicon Micromachining Technology. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1744–1748. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
a | 2.35 | ws | 1 |
b | 0.25 | ht | 0.25 |
xd | 2.4 | wc | 4.9 |
lg | 1 | yd | 2.2 |
lm | 1.1 | lc | 4.3 |
wm | 0.92 | lf | 2 |
ls | 1.8 | wf | 0.4 |
Ref. | Fabrication Technology | f0 (GHz) | B.W(|S11| < −10 dB) | Num. Of Unit | SLL (dB) | Max. Gain (dBi) | Max Rad. Efficiency | Fabrication Efficiency | Fabrication Cost |
---|---|---|---|---|---|---|---|---|---|
[11] | Electroforming | 94 | 8.3% | 8 × 8 | −8 | 26.8 | 81.9% | Low | High |
[13] | Laser etching + Diffusion bonding | 60 | 10.9% | 16 ×16 | −11 | 32 | 80% | High | High |
[18] | Multilayer PCB | 63 | 14.6% | 32 × 32 | −10 | 39.2 | 51% | High | Low |
[22] | LTCC + Metal CNC | 94 | 14.9% | 8 × 8 | −11 | 23.8 | 42% | High | Moderate |
[24] | Bulk silicon MEMS | 59 | 2.2% | 1 × 8 | −18.6 | 13.3 | 45% | High | High |
This work | Bulk silicon MEMS + Metal CNC | 94 | 8.1% | 8 × 8 | −11 | 26.2 | 65.2% | High | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Luo, H.; Tan, W.; Zhou, Z.; Zhao, G.; Sun, H. Design of a High-Gain Hybrid Slot Antenna Array Based on Bulk Silicon MEMS Process for W-Band Applications. Electronics 2023, 12, 2028. https://doi.org/10.3390/electronics12092028
Zhao Y, Luo H, Tan W, Zhou Z, Zhao G, Sun H. Design of a High-Gain Hybrid Slot Antenna Array Based on Bulk Silicon MEMS Process for W-Band Applications. Electronics. 2023; 12(9):2028. https://doi.org/10.3390/electronics12092028
Chicago/Turabian StyleZhao, Yu, Hao Luo, Wenhao Tan, Zheng Zhou, Guoqiang Zhao, and Houjun Sun. 2023. "Design of a High-Gain Hybrid Slot Antenna Array Based on Bulk Silicon MEMS Process for W-Band Applications" Electronics 12, no. 9: 2028. https://doi.org/10.3390/electronics12092028
APA StyleZhao, Y., Luo, H., Tan, W., Zhou, Z., Zhao, G., & Sun, H. (2023). Design of a High-Gain Hybrid Slot Antenna Array Based on Bulk Silicon MEMS Process for W-Band Applications. Electronics, 12(9), 2028. https://doi.org/10.3390/electronics12092028