Adaptive Inertia and Damping Coordination (AIDC) Control for Grid-Forming VSG to Improve Transient Stability
Abstract
:1. Introduction
- (1)
- The design principle of the adaptive virtual inertia and damping is given considering not only frequency stability but also transient synchronization stability. The virtual inertia is designed to adaptively increase in the accelerated area and decrease in the decelerated area. Meanwhile, the virtual damping coefficient is designed to increase and enlarge the positive virtual damping effect during the transient process. Compared with the studies in [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26], the benefits of adaptive virtual inertia and virtual damping on transient synchronization stability is fully discussed. The comparisons are summarized in Table 1.
- (2)
- A practical arctan-function-based control realization of adaptive virtual inertia and damping with limited boundaries is proposed. The mathematical function ∆J = arctan(∆ω∙dω/dt) guarantees the boundaries for the adaptive virtual inertia, and ∆Dm = arctan2(dω/dt) provides an upper limit and guarantees ∆D remains positive during the whole accelerated/decelerated transient process, which facilitates engineers’ design.
- (3)
- The effectiveness of the proposed AIDC control is verified through large-signal attraction area analysis and time-domain experimental results. By coordinating the design for virtual inertia and damping, the system attraction area, dynamic performance, and transient stability have been significantly improved.
2. Proposed AIDC Control Method of VSG
2.1. Classical VSG System Configuration
2.2. Proposed Universal AIDC Control Principle Oriented to Transient Stability
2.3. Proposed Arctan-Function-Based AIDC Control Method
2.3.1. The Adaptive Virtual Inertia according to ∆ω and dω/dt
2.3.2. The Adaptive Virtual Damping according to dω/dt
3. Transient Stability Analysis of the Proposed AIDC Control
4. Control-Hardware-In-Loop (CHIL) Tests
4.1. Transient Synchronization Stability Enhancement Verifications
4.2. Inertia Support and Frequency Regulation Ability Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milano, F.; Dörfler, F.; Hug, G.; Hill, D.J.; Verbič, G. Foundations and Challenges of Low-Inertia Systems (Invited Paper). In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Republic of Ireland; 2018; pp. 1–25. [Google Scholar] [CrossRef]
- Fu, X.; Sun, J.; Huang, M.; Tian, Z.; Yan, H.; Iu, H.H.-C.; Hu, P.; Zha, X. Large-Signal Stability of Grid-Forming and Grid-Following Controls in Voltage Source Converter: A Comparative Study. IEEE Trans. Power Electron. 2020, 36, 7832–7840. [Google Scholar] [CrossRef]
- Du, W.; Chen, Z.; Schneider, K.P.; Lasseter, R.H.; Nandanoori, S.P.; Tuffner, F.K.; Kundu, S. A Comparative Study of Two Widely Used Grid-Forming Droop Controls on Microgrid Small-Signal Stability. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 963–975. [Google Scholar] [CrossRef]
- Rosso, R.; Wang, X.; Liserre, M.; Lu, X.; Engelken, S. Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends-A Review. IEEE Open J. Ind. Appl. 2021, 2, 93–109. [Google Scholar] [CrossRef]
- Guerrero, J.; de Vicuna, L.G.; Matas, J.; Castilla, M.; Miret, J. Output Impedance Design of Parallel-Connected UPS Inverters with Wireless Load-Sharing Control. IEEE Trans. Ind. Electron. 2005, 52, 1126–1135. [Google Scholar] [CrossRef]
- Zhang, L.; Harnefors, L.; Nee, H.-P. Power-Synchronization Control of Grid-Connected Voltage-Source Converters. IEEE Trans. Power Syst. 2009, 25, 809–820. [Google Scholar] [CrossRef]
- Zhong, Q.-C.; Weiss, G. Synchronverters: Inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 2011, 58, 1259–1267. [Google Scholar] [CrossRef]
- Bevrani, H.; Ise, T.; Miura, Y. Virtual synchronous generators: A survey and new perspectives. Int. J. Electr. Power Energy Syst. 2014, 54, 244–254. [Google Scholar] [CrossRef]
- D’Arco, S.; Suul, J.A. Equivalence of Virtual Synchronous Machines and Frequency-Droops for Converter-Based MicroGrids. IEEE Trans. Smart Grid 2014, 5, 394–395. [Google Scholar] [CrossRef]
- Fang, J.; Li, H.; Tang, Y.; Blaabjerg, F. Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters. IEEE Trans. Power Electron. 2018, 33, 8488–8499. [Google Scholar] [CrossRef]
- Soni, N.; Doolla, S.; Chandorkar, M.C. Improvement of Transient Response in Microgrids Using Virtual Inertia. IEEE Trans. Power Deliv. 2013, 28, 1830–1838. [Google Scholar] [CrossRef]
- Alipoor, J.; Miura, Y.; Ise, T. Power System Stabilization Using Virtual Synchronous Generator With Alternating Moment of Inertia. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 3, 451–458. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Q.; Lin, S.; Bian, X.Y. A Self-Adaptive Inertia and Damping Combination Control of VSG to Support Frequency Stability. IEEE Trans. Energy Convers. 2016, 32, 397–398. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, X.; Hu, C.; Xu, H.; Gu, J.; Cao, W. Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids. J. Mod. Power Syst. Clean Energy 2018, 6, 482–494. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.; Feng, X.; Guo, H. An Adaptive Control Strategy for Virtual Synchronous Generator. IEEE Trans. Ind. Appl. 2018, 54, 5124–5133. [Google Scholar] [CrossRef]
- Adaptive virtual synchronous generator considering converter and storage capacity limits. CSEE J. Power Energy Syst. 2020, 8, 580–590. [CrossRef]
- Sun, L.; Wang, P.; Han, J.; Wang, Y.; Yu, C.; Chen, M. Adaptive Inertia Control of Virtual Synchronous Generator Based on Power Feedback. In Proceedings of the 2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 28–30 May 2021. [Google Scholar] [CrossRef]
- Ban, G.; Xu, Y.; Guo, D.; Zhou, W.; Zheng, H.; Yuan, X. Research on Adaptive VSG Control Strategy Based on Inertia and Damping. In Proceedings of the 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, 23–25 December 2021. [Google Scholar] [CrossRef]
- Fang, H.; Yu, Z. Improved virtual synchronous generator control for frequency regulation with a coordinated self-adaptive method. CSEE J. Power Energy Syst. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Miao, H.; Yuan, X. An improved adaptive inertia and damping control strategy for virtual synchronous generator. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 322–328. [Google Scholar] [CrossRef]
- Hou, X.; Sun, Y.; Zhang, X.; Lu, J.; Wang, P.; Guerrero, J.M. Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia. IEEE Trans. Power Electron. 2019, 35, 1589–1602. [Google Scholar] [CrossRef]
- Li, X.; Chen, G. Improved Adaptive Inertia Control of VSG for Low Frequency Oscillation Suppression. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Abubakr, H.; Guerrero, J.M.; Vasquez, J.C.; Mohamed, T.H.; Mahmoud, K.; Darwish, M.M.F.; Dahab, Y.A. Adaptive LFC Incorporating Modified Virtual Rotor to Regulate Frequency and Tie-Line Power Flow in Multi-Area Microgrids. IEEE Access 2022, 10, 33248–33268. [Google Scholar] [CrossRef]
- Abubakr, H.; Vasquez, J.C.; Mohamed, T.H.; Guerrero, J.M. The concept of direct adaptive control for improving voltage and frequency regulation loops in several power system applications. Int. J. Electr. Power Energy Syst. 2022, 140, 108068. [Google Scholar] [CrossRef]
- Torres, M.A.L.; Lopes, L.A.C.; Morán, L.A.; Espinoza, J.R. Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control. IEEE Trans. Energy Convers. 2014, 29, 833–840. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, Z.; Bu, S.; Li, X.; Booth, C.D.; Qiu, W.; Jia, H.; Wang, C. Coordinated Flexible Damping Mechanism With Inertia Emulation Capability for MMC-MTDC Transmission Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 9, 7329–7342. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Zhao, J.; Yu, L.; Li, S.; Li, Y.; Guerrero, J.M.; Wang, C. Inertia Emulation and Fast Frequency-Droop Control Strategy of a Point-to-Point VSC-HVdc Transmission System for Asynchronous Grid Interconnection. IEEE Trans. Power Electron. 2022, 37, 6530–6543. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, J.; Ge, L.; Bu, S.; Zhao, J.; Chung, C.Y.; Li, X.; Wang, C. Variable-Inertia Emulation Control Scheme for VSC-HVDC Transmission Systems. IEEE Trans. Power Syst. 2021, 37, 629–639. [Google Scholar] [CrossRef]
- Wang, X.; Taul, M.G.; Wu, H.; Liao, Y.; Blaabjerg, F.; Harnefors, L. Grid-Synchronization Stability of Converter-Based Resources—An Overview. IEEE Open J. Ind. Appl. 2020, 1, 115–134. [Google Scholar] [CrossRef]
- Pan, D.; Wang, X.; Liu, F.; Shi, R. Transient Stability of Voltage-Source Converters With Grid-Forming Control: A Design-Oriented Study. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 1019–1033. [Google Scholar] [CrossRef]
- Shi, H.; Sun, K.; Hou, X.; Li, Y.; Jiang, H. Equilibrium Mechanism between DC Voltage and AC Frequency for AC-DC Interlinking Converters. iEnergy 2022, 1, 279–284. [Google Scholar] [CrossRef]
- He, X.; Pan, S.; Geng, H. Transient Stability of Hybrid Power Systems Dominated by Different Types of Grid-Forming Devices. IEEE Trans. Energy Convers. 2022, 37, 868–879. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, C.; Hu, B.; Pan, D.; Blaabjerg, F. Transient Damping Method for Improving the Synchronization Stability of Virtual Synchronous Generators. IEEE Trans. Power Electron. 2020, 36, 7820–7831. [Google Scholar] [CrossRef]
- Sun, R.; Ma, J.; Yang, W.; Wang, S.; Liu, T. Transient Synchronization Stability Control for LVRT With Power Angle Estimation. IEEE Trans. Power Electron. 2021, 36, 10981–10985. [Google Scholar] [CrossRef]
- Choopani, M.; Hosseinian, S.H.; Vahidi, B. New Transient Stability and LVRT Improvement of Multi-VSG Grids Using the Frequency of the Center of Inertia. IEEE Trans. Power Syst. 2019, 35, 527–538. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, C.; Cheng, P.; Blaabjerg, F. An Optimal Damping Design of Virtual Synchronous Generators for Transient Stability Enhancement. IEEE Trans. Power Electron. 2021, 36, 11026–11030. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X. A Mode-Adaptive Power-Angle Control Method for Transient Stability Enhancement of Virtual Synchronous Generators. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1034–1049. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Han, H.; Fu, S.; Luo, S.; Shi, G. A Modified VSG Control Scheme With Virtual Resistance to Enhance Both Small-Signal Stability and Transient Synchronization Stability. IEEE Trans. Power Electron. 2023, 38, 6005–6014. [Google Scholar] [CrossRef]
- Yuan, Z.; Shen, X.; Tan, Y.; Tan, Z.; Lei, J. Interactive Power Oscillation and Its Suppression Strategy for VSG-DSG Paralleled System in Islanded Microgrid. Chin. J. Electr. Eng. 2022, 8, 113–120. [Google Scholar] [CrossRef]
Types | Adaptive Virtual Inertia | Adaptive Virtual Damping | Characteristics | Optimization Objectives |
---|---|---|---|---|
[13,19,20] |
| Dynamic performance optimization. | ||
[14] |
| Dynamic performance optimization. | ||
[15] |
| Dynamic performance optimization. | ||
[16] |
| Frequency stability improvement. | ||
[17] | Fixed virtual damping |
| Frequency stability improvement. | |
[18] |
| Dynamic performance optimization. | ||
[21] | Fixed virtual damping |
| Dynamic performance optimization. | |
[22] | Fixed virtual damping |
| Frequency oscillation suppression. | |
[23] | Adaptive virtual inertia coefficient with Jaya-based-BE (balloon effect) algorithm. | Adaptive virtual damping coefficient with Jaya-based-BE (balloon effect) algorithm. |
| Dynamic performance optimization. |
[24] | Adaptive virtual inertia coefficient with HHO (Harris hawks optimization) optimizer. | Adaptive virtual damping coefficient with HHO optimizer. |
| Dynamic performance optimization. |
This study |
| Transient synchronization enhancement and frequency stability improvement. |
Segment | Δω | dω/dt | ω State | Power Angle Operation Area | ΔJ | ΔD |
---|---|---|---|---|---|---|
t1–t2 | >0 | >0 | Deviation | Accelerated Aera | >0 | >0 |
t2–t3 | >0 | <0 | Return | Decelerated Aera | <0 | >0 |
t3–t4 | <0 | <0 | Deviation | Accelerated Aera | >0 | >0 |
t4–t5 | <0 | >0 | Return | Decelerated Aera | <0 | >0 |
Parameter | Symbol | Value |
---|---|---|
System Parameters | ||
Nominal frequency | f* | 50 Hz |
Nominal voltage | V* | 311 V |
Rated active power | P* | 20 kW |
Rated reactive power | Q* | 0 kvar |
Control Parameters | ||
Power filter time constant | τ | 1/60 |
Q-V droop coefficient | n | 1 p.u. |
Virtual inertia constant | J0 | 4 p.u. |
Virtual damping coefficient | D0 | 2 p.u. |
Adaptive inertia coefficient | kJ | 1 p.u. |
Adaptive damping coefficient | kD | 2 p.u. |
Methods | ΔJ | ΔD | Critical Clearing Time (CCT) | Transient Synchronization Stability |
---|---|---|---|---|
Traditional VSG control | 0 | 0 | 1.23 s | / |
Only adaptive virtual inertia control | 0 | 1.55 s | + | |
Proposed AIDC control | 2.00 s | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhou, H.; Hu, X.; Hou, X.; Su, C.; Sun, K. Adaptive Inertia and Damping Coordination (AIDC) Control for Grid-Forming VSG to Improve Transient Stability. Electronics 2023, 12, 2060. https://doi.org/10.3390/electronics12092060
Wang L, Zhou H, Hu X, Hou X, Su C, Sun K. Adaptive Inertia and Damping Coordination (AIDC) Control for Grid-Forming VSG to Improve Transient Stability. Electronics. 2023; 12(9):2060. https://doi.org/10.3390/electronics12092060
Chicago/Turabian StyleWang, Lei, Hao Zhou, Xuekai Hu, Xiaochao Hou, Can Su, and Kai Sun. 2023. "Adaptive Inertia and Damping Coordination (AIDC) Control for Grid-Forming VSG to Improve Transient Stability" Electronics 12, no. 9: 2060. https://doi.org/10.3390/electronics12092060
APA StyleWang, L., Zhou, H., Hu, X., Hou, X., Su, C., & Sun, K. (2023). Adaptive Inertia and Damping Coordination (AIDC) Control for Grid-Forming VSG to Improve Transient Stability. Electronics, 12(9), 2060. https://doi.org/10.3390/electronics12092060