Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets
Abstract
:1. Introduction
2. Related Work
2.1. Compressed Sensing Theory
2.2. LDPC Codes and QC-LDPC Codes
3. Determine QC-LDPC Codes Based on Arithmetic Sequence Sets
3.1. Constructing Elements in the Basis Matrix
Algorithm 1: Construction of the measurement matrix |
Input: Two positive integers m and n, where m < n, constant d, J, L and q. Output: measurement matrix Initialization: Initialize an identity matrix I.
For i = 1 to m For j = 1 to n do
|
3.2. Girth Analysis
3.3. Mutual Coherence Analysis
4. Experiment and Discussion
4.1. Reconstruction Performance of One-Dimensional Signals
4.2. Reconstruction Performance of Two-Dimensional Images
4.3. Comparison of Computing Complexity, Storage Space and Reconstruction Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- (1)
- when
- (2)
- when
- (3)
- when
- (4)
- when .
References
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory. 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J.; Wakin, M.B. An Introduction To Compressive Sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Romberg, J. Imaging via compressive sampling. IEEE Signal Process. Mag. 2008, 25, 14–20. [Google Scholar] [CrossRef]
- Candes, E.J.; Tao, T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, L.; Chen, W. Single-Pixel Imaging Authentication Using Sparse Hadamard Spectrum Coefficients. IEEE Photon-Technol. Lett. 2019, 31, 1975–1978. [Google Scholar] [CrossRef]
- Yang, J.; Jin, T.; Huang, X. Compressed Sensing Radar Imaging With Magnitude Sparse Representation. IEEE Access 2019, 7, 29722–29733. [Google Scholar] [CrossRef]
- Scheffle, K.; Loktyushin, A. Spread-spectrum magnetic resonance imaging. Magn. Reason. Med. 2019, 82, 877–885. [Google Scholar]
- Axell, E.; Leus, G.; Larsson, E.G.; Poor, H.V. Spectrum Sensing for Cognitive Radio: State-of-the-Art and Recent Advances. IEEE Signal Process. Mag. 2012, 29, 101–116. [Google Scholar] [CrossRef]
- Elad, M. Optimized Projections for Compressed Sensing. IEEE Trans. Signal Process. 2007, 55, 5695–5702. [Google Scholar] [CrossRef]
- Bourgain, J.; Dilworth, S.; Ford, K.; Konyagin, S.; Kutzarova, D. Explicit constructions of RIP matrices and related problems. Duke Math. J. 2011, 59, 145–185. [Google Scholar] [CrossRef]
- Gan, H.; Li, Z.; Li, J.; Wang, X.; Cheng, Z. Compressive sensing using chaotic sequence based on Chebyshev map. Nonlinear Dyn. 2014, 78, 2429–2438. [Google Scholar] [CrossRef]
- Castorena, J.; Creusere, D. The restricted isometry property for banded random matrices. IEEE Trans. Signal Process. 2014, 63, 5073–5084. [Google Scholar] [CrossRef]
- Gan, H.; Xiao, S.; Zhao, Y. A Novel Secure Data Transmission Scheme Using Chaotic Compressed Sensing. IEEE Access 2017, 6, 4587–4598. [Google Scholar] [CrossRef]
- Li, S.; Ge, G. Deterministic Sensing Matrices Arising From Near Orthogonal Systems. IEEE Trans. Inf. Theory 2014, 60, 2291–2302. [Google Scholar] [CrossRef]
- Andrianiaina, R.; Rabah, H.; Rouane, A. Compressed sensing: A simple deterministic measurement matrix and a fast recovery algorithm. IEEE Trans. Instrum. Meas. 2015, 64, 3405–3413. [Google Scholar]
- Devore, R.A. Deterministic constructions of compressed sensing matrices. J. Complex. 2007, 23, 918–925. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, C.; Ding, D.; Sui, W. The theory of compressed sensing and reconstruction algorithm. Acta Electron. Sinica 2011, 39, 142–148. [Google Scholar]
- Dossal, C.; Peyre, G.; Fadili, J.A. Numerical Exploration of Compressed Sampling Recovery. Linear Algebra Its Appl. 2010, 432, 1663–1679. [Google Scholar] [CrossRef]
- Dimakis, A.; Smarandache, R.; Vontobel, P. LDPC codes for compressed sensing. IEEE Trans. Inf. Theory 2012, 58, 3093–3114. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Xie, Z.G. Sparse binary matrixes of QC-LDPC code for compressed sensing. In Proceedings of the 2014 11th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 19–21 December 2014; pp. 284–288. [Google Scholar]
- He, Z.; Ogawa, T.; Haseyama, M.; Zhao, X.; Zhang, S. A compressed sensing-based low-density parity-check real-number code. Radioengineering 2013, 22, 851. [Google Scholar]
- Zeng, W.; Wang, H. Peeling Decoding of LDPC Codes with Applications in Compressed Sensing. Math. Probl. Eng. 2016, 2016, 4. [Google Scholar] [CrossRef]
- Xia, S.; Liu, X.; Jiang, Y. Deterministic constructions of binary measurement matrices from finite geometry. IEEE Trans. Signal Process. 2015, 63, 1017–1029. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, X.; Chen, L.; Cao, T.; Yang, J. Deterministic construction of Toeplitzed structurally chaotic matrix for compressed sensing. Circuits Syst. Signal Process. 2015, 34, 797–813. [Google Scholar] [CrossRef]
- Naidu, R.; Jampana, P.; Sastry, C.S. Deterministic compressed sensing matrices: Construction via Euler Squares and applications. IEEE Trans. Signal Process. 2016, 64, 3566–3575. [Google Scholar] [CrossRef]
- Bryant, D.; Colbourn, C.J.; Horsley, D.; Cathain, P.O. Compressed sensing with combinatorial designs: Theory and simulations. IEEE Trans. Inf. Theory 2017, 63, 4850–4859. [Google Scholar] [CrossRef]
- Lu, W.; Dai, T.; Xia, S. Binary matrices for compressed sensing. IEEE Trans. Signal Process. 2018, 66, 77–85. [Google Scholar] [CrossRef]
- Liu, H.; Yin, J.; Hua, G.; Yin, H.; Zhu, A. Deterministic construction of measurement matrices based on Bose balanced incomplete block designs. IEEE Access. 2018, 6, 21710–21718. [Google Scholar]
- Fardad, M.; Sayedi, S.M.; Ehsan, Y. A low-complexity hardware for deterministic compressive sensing reconstruction. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 3349–3361. [Google Scholar] [CrossRef]
- Torshizi, E.O.; Tinati, M.A.; Meshgini, S. Deterministic construction of array QC CS measurement matrices based on Singer perfect difference sets. IET Commun. 2019, 13, 2512–2522. [Google Scholar] [CrossRef]
- Tong, F.; Li, L.; Peng, H.; Yang, Y. Flexible construction of compressed sensing matrices with low storage space and low coherence. Signal Process. 2020, 182, 107951. [Google Scholar] [CrossRef]
- Kazemi, V.; Shahzadi, A.; Bizaki, H.K. New flexible deterministic compressive measurement matrix based on finite Galois field. IET Image Process. 2021, 16, 239–251. [Google Scholar] [CrossRef]
- Liang, J.; Peng, H.; Li, L. Flexible construction of measurement matrices in compressed sensing based on extensions of incidence matrices of combinatorial designs. Appl. Math. Comput. 2021, 420, 126901, ISSN 0096-3003. [Google Scholar] [CrossRef]
- Abolghasemi, V.; Ferdowsi, S.; Sanei, S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process. 2012, 92, 999–1009. [Google Scholar] [CrossRef]
- Yi, R.; Cui, C.; Wu, B.; Gong, Y. A new method of measurement matrix optimization for compressed sensing based on alternating minimization. Mathematics 2021, 9, 329. [Google Scholar] [CrossRef]
- Xu, Q.; Sheng, Z.; Fang, Y.; Zhang, L. Measurement Matrix Optimization for Compressed Sensing System with Constructed Dictionary via Takenaka–Malmquist Functions. Sensors 2021, 21, 1229. [Google Scholar] [CrossRef]
- Candes, E.; Tao, T. Decoding by Linear Programming. IEEE Trans. Inf. Theory 2005, 51, 4203–4215. [Google Scholar] [CrossRef]
- Tropp, J.A.; Gilbert, A.C. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit. IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [Google Scholar] [CrossRef]
- Welch, L. Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf. Theory 1974, 20, 397–399. [Google Scholar] [CrossRef]
- Gallager, R.G. Low-density parity-check codes. IEEE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- MacKay, D.J.; Neal, R.M. Near Shannon limit performance of low-density parity-check codes. Electron. Lett. 1996, 32, 1645–1646. [Google Scholar] [CrossRef]
- Torshizi, E.O.; Sharifi, H.; Seyrafi, M. A new hybrid decoding algorithm for LDPC codes based on the improved variable multi weighted bit-flipping and BP algorithms. In Proceedings of the 21st Iranian Conference on Electrical Engineering, Mashhad, Iran, 14–16 May 2013; pp. 1–6. [Google Scholar]
- Fossorier, M. Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices. IEEE Trans. Inf. Theory 2004, 50, 1788–1794. [Google Scholar] [CrossRef]
- Zhan, Y.; Da, X. Construction of girth-eight QC-LDPC codes from arithmetic progression sequence with large column weight. Electron. Lett. 2015, 51, 1257–1259. [Google Scholar] [CrossRef]
- Xu, H.; Feng, D.; Luo, R.; Bai, B. Construction of Quasi-Cyclic LDPC Codes via Masking With Successive Cycle Elimination. IEEE Commun. Lett. 2016, 20, 13–16. [Google Scholar] [CrossRef]
- Khajehnejad, A.; Tehrani, A.S.; Dimakis, A.G.; Hassibi, B. Explicit matrices for sparse approximation. In Proceedings of the 2011 IEEE International Symposium on Information Theory, Saint-Petersburg, Russia, 31 July–5 August 2011; pp. 469–473. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Explicit+matrices+for+sparse+approximation.+&btnG= (accessed on 7 March 2023).
- Liu, H.; Zhang, H.; Ma, L. On the spark of binary LDPC measurement matrices from complete photographs. IEEE Signal Process. Lett. 2017, 24, 1616–1620. [Google Scholar] [CrossRef]
- Tasdighi, A.; Banihashemi, A.H.; Sadeghi, M.R. Symmetrical constructions for regular girth-8 QC-LDPC codes. IEEE Trans. Commun. 2017, 65, 14–22. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Wang, D.; Fei, A.; Chen, X.; Ju, C.; Wang, H.; Zhang, Q. Construction method of large girth QC-LDPC codes based on Fibonacci-Lucas sequence. J. Chongqing Univ. Posts Telecommun. 2018, 30, 505–510. [Google Scholar]
Measurement Matrix | ||||
---|---|---|---|---|
Coherence | ||||
Gaussian Matrix | 0.5204 | 0.4878 | 0.3953 | 0.3657 |
Bernoulli Matrix | 0.4909 | 0.4588 | 0.3860 | 0.3375 |
Toeplitz Matrix | 0.4545 | 0.3882 | 0.3333 | 0.3000 |
Hadamard Matrix | / | / | / | 0.1875 |
Proposed Matrix | 0.2501 | 0.1667 | 0.2010 | 0.2000 |
Image | Measurement Matrix | PSNR(dB)|SSIM | |||||
---|---|---|---|---|---|---|---|
0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
Barbara | Gaussian matrix | 15.29|0.6933 | 18.90|0.8617 | 21.58|0.9253 | 24.31|0.9598 | 26.00|0.9727 | 27.63|0.9813 |
Bernoulli matrix | 15.99|0.7308 | 18.96|0.8638 | 21.61|0.9256 | 24.40|0.9606 | 26.16|0.9737 | 27.64|0.9813 | |
Toeplitz matrix | 15.34|0.6978 | 18.93|0.8646 | 21.61|0.9256 | 24.30|0.9597 | 26.09|0.9732 | 27.96|0.9826 | |
Proposed matrix | 17.92|0.8211 | 21.25|0.9187 | 23.91|0.9560 | 25.26|0.9676 | 27.98|0.9826 | 30.00|0.9901 | |
Peppers | Gaussian matrix | 16.33|0.7526 | 21.05|0.9130 | 24.79|0.9629 | 28.16|0.9829 | 30.19|0.9893 | 31.85|0.9927 |
Bernoulli matrix | 16.65|0.7735 | 21.16|0.9146 | 24.79|0.9628 | 28.32|0.9835 | 30.20|0.9893 | 31.96|0.9929 | |
Toeplitz matrix | 16.21|0.7487 | 20.99|0.9119 | 24.89|0.9637 | 28.37|0.9837 | 30.37|0.9898 | 32.13|0.9931 | |
Proposed matrix | 19.21|0.8765 | 23.64|0.9517 | 27.45|0.9799 | 29.06|0.9860 | 31.80|0.9914 | 33.86|0.9960 | |
Woman | Gaussian matrix | 16.98|0.6532 | 19.87|0.8189 | 22.18|0.8925 | 24.95|0.9429 | 26.73|0.9620 | 28.32|0.9736 |
Bernoulli matrix | 16.36|0.6012 | 19.80|0.8163 | 22.21|0.8935 | 25.04|0.9442 | 26.69|0.9616 | 28.28|0.9734 | |
Toeplitz matrix | 16.47|0.6102 | 19.85|0.8174 | 22.16|0.8921 | 24.95|0.9430 | 26.91|0.9636 | 28.53|0.9749 | |
Proposed matrix | 18.67|0.7654 | 21.99|0.8872 | 24.59|0.9379 | 25.87|0.9538 | 26.61|0.9609 | 29.71|0.9713 | |
Mandrill | Gaussian matrix | 15.28|0.4993 | 16.14|0.5787 | 17.26|0.6755 | 18.52|0.7531 | 19.50|0.8014 | 20.50|0.8411 |
Bernoulli matrix | 15.32|0.4919 | 16.05|0.5809 | 17.04|0.6616 | 18.51|0.7535 | 19.49|0.8014 | 20.46|0.8393 | |
Toeplitz matrix | 15.44|0.4987 | 16.05|0.5757 | 17.11|0.6680 | 18.44|0.7506 | 19.54|0.8033 | 20.56|0.8433 | |
Proposed matrix | 16.01|0.5801 | 15.67|0.5678 | 17.44|0.6810 | 18.44|0.7486 | 20.55|0.8431 | 21.45|0.8601 | |
House | Gaussian matrix | 17.12|0.7856 | 21.41|0.9036 | 23.79|0.9445 | 26.17|0.9677 | 27.64|0.9769 | 29.09|0.9835 |
Bernoulli matrix | 17.79|0.7864 | 21.25|0.9030 | 23.88|0.9454 | 26.15|0.9676 | 27.64|0.9769 | 28.99|0.9831 | |
Toeplitz matrix | 17.82|0.7877 | 21.46|0.9055 | 23.85|0.9452 | 26.19|0.9678 | 27.83|0.9779 | 29.29|0.9842 | |
Proposed matrix | 20.12|0.8945 | 23.36|0.9382 | 25.82|0.9649 | 26.92|0.9727 | 28.60|0.9813 | 30.01|0.9915 | |
Boat | Gaussian matrix | 15.83|0.6414 | 19.18|0.8226 | 21.72|0.9004 | 24.47|0.9469 | 26.19|0.9642 | 27.88|0.9757 |
Bernoulli matrix | 15.36|0.6398 | 19.36|0.8307 | 21.74|0.9012 | 24.38|0.9459 | 26.16|0.9639 | 27.88|0.9757 | |
Toeplitz matrix | 15.01|0.6301 | 19.37|0.8302 | 21.84|0.9035 | 24.47|0.9469 | 26.42|0.9660 | 28.06|0.9766 | |
Proposed matrix | 18.97|0.8119 | 21.55|0.8966 | 24.20|0.9434 | 25.45|0.9575 | 26.22|0.9644 | 28.21|0.9786 | |
Cameraman | Gaussian matrix | 14.86|0.7487 | 20.09|0.9176 | 24.01|0.9665 | 28.38|0.9877 | 30.99|0.9933 | 33.16|0.9959 |
Bernoulli matrix | 14.61|0.7412 | 20.00|0.9166 | 23.87|0.9654 | 28.34|0.9876 | 31.07|0.9934 | 33.30|0.9961 | |
Toeplitz matrix | 14.58|0.7401 | 20.06|0.9178 | 23.77|0.9647 | 28.57|0.9883 | 31.06|0.9934 | 33.70|0.9964 | |
Proposed matrix | 17.45|0.8231 | 22.74|0.9552 | 25.41|0.9747 | 29.61|0.9908 | 31.67|0.9947 | 33.66|0.9971 | |
Couple | Gaussian matrix | 16.61|0.6623 | 19.29|0.8077 | 21.64|0.8883 | 24.33|0.9394 | 26.07|0.9592 | 27.40|0.9700 |
Bernoulli matrix | 16.91|0.6812 | 19.26|0.8078 | 21.70|0.8896 | 24.29|0.9389 | 25.84|0.9571 | 27.42|0.9701 | |
Toeplitz matrix | 16.98|0.6835 | 19.25|0.8096 | 21.66|0.8889 | 24.36|0.9397 | 26.10|0.9596 | 27.59|0.9712 | |
Proposed matrix | 19.01|0.8011 | 21.64|0.8870 | 24.09|0.9360 | 25.13|0.9496 | 26.99|0.9634 | 28.89|0.9821 | |
Resolution chart | Gaussian matrix | 12.39|0.6292 | 14.18|0.7423 | 16.66|0.8899 | 18.93|0.9118 | 20.13|0.9330 | 22.33|0.9507 |
Bernoulli matrix | 12.14|0.6128 | 14.40|0.7491 | 16.09|0.8805 | 18.85|0.9189 | 20.37|0.9343 | 22.04|0.9563 | |
Toeplitz matrix | 12.58|0.6425 | 14.59|0.7546 | 16.85|0.8894 | 18.47|0.9162 | 20.92|0.9346 | 22.34|0.9579 | |
Proposed matrix | 14.61|0.7547 | 16.30|0.8372 | 18.46|0.9124 | 20.04|0.9310 | 22.55|0.9509 | 24.96|0.9732 | |
Camera test | Gaussian matrix | 9.45|0.1945 | 12.33|0.6462 | 14.74|0.8333 | 16.12|0.9220 | 18.11|0.9669 | 21.92|0.9827 |
Bernoulli matrix | 9.25|0.2229 | 12.03|0.6412 | 14.78|0.8353 | 16.22|0.9240 | 18.15|0.9668 | 21.50|0.9812 | |
Toeplitz matrix | 10.62|0.2667 | 12.07|0.6256 | 14.87|0.8399 | 16.15|0.9229 | 18.45|0.9670 | 21.68|0.9823 | |
Proposed matrix | 12.27|0.6410 | 14.82|0.7963 | 16.35|0.8831 | 18.36|0.9412 | 20.03|0.9696 | 22.65|0.9919 |
Measurement Matrix | Number of Additions | Number of Multiplications | Required Storage Space |
---|---|---|---|
Gaussian Matrix | |||
Bernoulli Matrix | 0 | ||
Toeplitz Matrix | 0 | ||
Proposed Matrix |
Measurement Matrix | Computational Complexity | |||
---|---|---|---|---|
Gaussian Matrix | 12,045 | 77,862 | 46,155 | 163,680 |
Bernoulli Matrix | 5995 | 38,874 | 23,035 | 81,760 |
Toeplitz Matrix | 5995 | 38,874 | 23,035 | 81,760 |
Proposed Matrix | 586 | 22,137 | 1420 | 2620 |
Measurement Matrix | Required Storage Space (Unit: KB) | |||
---|---|---|---|---|
Gaussian Matrix | 95 | 610 | 362 | 1280 |
Bernoulli Matrix | 95 | 610 | 362 | 1280 |
Toeplitz Matrix | 95 | 610 | 362 | 1280 |
Proposed Matrix | 0.625 | 1.4 | 1 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Qin, Y.; Ren, H. Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets. Electronics 2023, 12, 2063. https://doi.org/10.3390/electronics12092063
Wang Y, Qin Y, Ren H. Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets. Electronics. 2023; 12(9):2063. https://doi.org/10.3390/electronics12092063
Chicago/Turabian StyleWang, Yue, Yali Qin, and Hongliang Ren. 2023. "Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets" Electronics 12, no. 9: 2063. https://doi.org/10.3390/electronics12092063
APA StyleWang, Y., Qin, Y., & Ren, H. (2023). Deterministic Construction of Compressed Sensing Measurement Matrix with Arbitrary Sizes via QC-LDPC and Arithmetic Sequence Sets. Electronics, 12(9), 2063. https://doi.org/10.3390/electronics12092063