YOLO-CSM-Based Component Defect and Foreign Object Detection in Overhead Transmission Lines
Abstract
:1. Introduction
- (1)
- An improved network named YOLO-CSM introduces the CBAM hybrid attention module and Swin Transformer self-attention module to YOLOv7. The model also adds a small object detection layer to the prediction part to grant the model a better identification ability of small objects;
- (2)
- A dataset containing five types of foreign objects and two types of component defects, with which the proposed method was compared along with the currently most popular models. Based on the comparison, the proposed model exhibits higher accuracy in detecting foreign objects and component defects, for which an interpretability analysis helps to disclose the reason;
- (3)
- The proposed method is compared with the current popular models, and the present method has higher accuracy in the detection of transmission line foreign objects and normal/defective line components. In addition, we perform an interpretability analysis of the model using the Grad-cam method.
2. Dataset Construction
3. Modeling and Methodologies
3.1. The Attention Mechanism
3.2. Swin Transformer Module
3.3. CBAM Attention Module
3.4. Additional Detection Layer
3.5. Loss Function
4. Experiment and Analysis
4.1. Hardware Configuration and Parameter Setting
4.2. Algorithm Evaluation Metrics
4.3. Training Speed and Final Loss
4.4. Model Comparisons
4.5. Ablation Experiments
4.5.1. Combination of Attention Modules and CNNs
4.5.2. YOLOv7 with Different Modules
4.6. Interpretability Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, N. Study on Resource Management of Electric Oriented Fiber Cable. In Proceedings of the 2018 IEEE International Conference of Safety Produce Informatization (IICSPI), Chongqing, China, 10–12 December 2018; pp. 169–172. [Google Scholar]
- Zhang, K.; Huang, W. Defect detection of anti-vibration hammer based on improved faster R-CNN. In Proceedings of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), Hefei, China, 25–27 September 2020; pp. 889–893. [Google Scholar]
- Li, Z.; Zhang, Y.; Wu, H.; Suzuki, S.; Namiki, A.; Wang, W. Design and Application of a UAV Autonomous Inspection System for High-Voltage Power Transmission Lines. Remote Sens. 2023, 15, 865. [Google Scholar] [CrossRef]
- Alhassan, A.B.; Zhang, X.; Shen, H.; Xu, H. Power transmission line inspection robots: A review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 2020, 118, 105862. [Google Scholar] [CrossRef]
- Jenssen, R.; Roverso, D. Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 2018, 99, 107–120. [Google Scholar]
- Li, X.; Li, Z.; Wang, H.; Li, W. Unmanned aerial vehicle for transmission line inspection: Status, standardization, and perspectives. Front. Energy Res. 2021, 9, 713634. [Google Scholar] [CrossRef]
- Gonçalves, R.S.; Souza, F.C.; Homma, R.Z.; Sudbrack, D.E.T.; Trautmann, P.V.; Clasen, B.C. Robots for Inspection and Maintenance of power transmission lines. In Robot Design: From Theory to Service Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 119–142. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Mao, T.; Ren, L.; Yuan, F.; Li, C.; Zhang, L.; Zhang, M.; Chen, Y. Defect recognition method based on HOG and SVM for drone inspection images of power transmission line. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Shenzhen, China, 9–11 May 2019; pp. 254–257. [Google Scholar]
- Yan, T.; Yang, G.; Yu, J. Feature fusion based insulator detection for aerial inspection. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 10972–10977. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Qing, Y.; Wang, C.; Lan, T.; Yao, R. Detection of insulator defects with improved ResNeSt and region proposal network. IEEE Access 2020, 8, 184841–184850. [Google Scholar] [CrossRef]
- Zheng, X.; Jia, R.; Gong, L.; Zhang, G.; Dang, J. Component identification and defect detection in transmission lines based on deep learning. J. Intell. Fuzzy Syst. 2021, 40, 3147–3158. [Google Scholar] [CrossRef]
- Deng, F.; Zeng, Z.; Mao, W.; Wei, B.; Li, Z. A Novel Transmission Line Defect Detection Method Based on Adaptive Federated Learning. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Zhu, J.; Guo, Y.; Yue, F.; Yuan, H.; Yang, A.; Wang, X.; Rong, M. A deep learning method to detect foreign objects for inspecting power transmission lines. IEEE Access 2020, 8, 94065–94075. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Yuan, J.; Xu, L.; Sun, H.; Zhou, J.; Liu, X. RCNN-based foreign object detection for securing power transmission lines (RCNN4SPTL). Procedia Comput. Sci. 2019, 147, 331–337. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Zheng, Z.; Zhang, W.; Guo, J. Study on the method of transmission line foreign body detection based on deep learning. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Wang, W.; Wang, Z.; Liu, B.; Yang, Y.; Sun, X. Typical defect detection technology of transmission line based on deep learning. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1185–1189. [Google Scholar]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar] [CrossRef]
- Xia, P.; Yin, J.; He, J.; Gu, L.; Yang, K. Neural detection of foreign objects for transmission lines in power systems. J. Phys. Conf. Ser. 2019, 1267, 012043. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, G.; He, W.; Fan, F.; Ye, X. Key target and defect detection of high-voltage power transmission lines with deep learning. Int. J. Electr. Power Energy Syst. 2022, 142, 108277. [Google Scholar] [CrossRef]
- Shan, H.; Song, Y.; Wang, H.; Chen, Y. Research on Efficient Detection Method of Foreign Objects on Transmission Lines Based on Improved YOLOv4 Network. J. Phys. Conf. Ser. 2022, 2404, 012040. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, Z.; Li, Q.; Chen, Y.; Xiang, P.; Yu, Q.; Zhang, L.; Lu, Y. Intrusion detection of foreign objects in high-voltage lines based on YOLOv4. In Proceedings of the 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 9–11 April 2021; pp. 1295–1300. [Google Scholar]
- Wang, Q.; Si, G.; Qu, K.; Gong, J.; Cui, L. Transmission line foreign body fault detection using multi-feature fusion based on modified YOLOv5. J. Phys. Conf. Ser. 2022, 2320, 012028. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, L.; Huang, D.; Li, R. Electrical insulator defects detection method based on yolov5. In Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 14–16 May 2021; pp. 979–984. [Google Scholar]
- Huang, Y.; Jiang, L.; Han, T.; Xu, S.; Liu, Y.; Fu, J. High-Accuracy Insulator Defect Detection for Overhead Transmission Lines Based on Improved YOLOv5. Appl. Sci. 2022, 12, 12682. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Rensink, R.A. The dynamic representation of scenes. Vis. Cogn. 2000, 7, 17–42. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Yatskar, M.; Yin, D.; Hsieh, C.J.; Chang, K.W. What does BERT with vision look at? In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 5265–5275. [Google Scholar]
- Bao, W.; Du, X.; Wang, N.; Yuan, M.; Yang, X. A Defect Detection Method Based on BC-YOLO for Transmission Line Components in UAV Remote Sensing Images. Remote Sens. 2022, 14, 5176. [Google Scholar] [CrossRef]
- Wu, M.; Guo, L.; Chen, R.; Du, W.; Wang, J.; Liu, M.; Kong, X.; Tang, J. Improved YOLOX Foreign Object Detection Algorithm for Transmission Lines. Wirel. Commun. Mob. Comput. 2022, 2022, 5835693. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Wu, C.; Ma, X.; Kong, X.; Zhu, H. Research on insulator defect detection algorithm of transmission line based on CenterNet. PLoS ONE 2021, 16, e0255135. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Xie, T.; Yan, R.; Wen, X.; Li, D.; Jiang, H.; Jiang, N.; Feng, L.; Duan, X.; Wang, J. An attention mechanism-improved YOLOv7 object detection algorithm for hemp duck count estimation. Agriculture 2022, 12, 1659. [Google Scholar] [CrossRef]
- Tao, X.; Zhang, D.; Wang, Z.; Liu, X.; Zhang, H.; Xu, D. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 1486–1498. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Du, Y.; Pei, B.; Zhao, X.; Ji, J. Deep scaled dot-product attention based domain adaptation model for biomedical question answering. Methods 2020, 173, 69–74. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Li, R.; Shen, Y. YOLOSR-IST: A deep learning method for small target detection in infrared remote sensing images based on super-resolution and YOLO. Signal Process. 2023, 208, 108962. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Wang, H.; Xie, W.; Long, K. YOLO-Former: Marrying YOLO and Transformer for Foreign Object Detection. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Zhao, L.; Zhu, M. MS-YOLOv7:YOLOv7 Based on Multi-Scale for Object Detection on UAV Aerial Photography. Drones 2023, 7, 188. [Google Scholar] [CrossRef]
- Yue, X.; Wang, Q.; He, L.; Li, Y.; Tang, D. Research on tiny f detection technology of fabric defects based on improved Yolo. Appl. Sci. 2022, 12, 6823. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, K.; Wang, L. Metal surface defect detection using modified YOLO. Algorithms 2021, 14, 257. [Google Scholar] [CrossRef]
- Liu, Y.; He, G.; Wang, Z.; Li, W.; Huang, H. NRT-YOLO: Improved YOLOv5 based on nested residual transformer for tiny remote sensing object detection. Sensors 2022, 22, 4953. [Google Scholar] [CrossRef]
- Gong, H.; Mu, T.; Li, Q.; Dai, H.; Li, C.; He, Z.; Wang, W.; Han, F.; Tuniyazi, A.; Li, H.; et al. Swin-transformer-enabled YOLOv5 with attention mechanism for small object detection on satellite images. Remote Sens. 2022, 14, 2861. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Virtual Event, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
Platform | Configuration |
---|---|
CPU model | Intel Xeon Silver 4210 |
GPU model | GeForce RTX 2080 |
Memory | 32G |
Operating system | Ubuntu 18.04 |
GPU accelerator | CUDA 10.2 |
Model | Precision | Recall | F1_Score | mAP | Parameter Numbers | FPS | |
---|---|---|---|---|---|---|---|
0.5 | 0.5:0.95 | ||||||
Faster-RCNN | 0.842 | 0.810 | 0.826 | 0.873 | 0.537 | —— | 19 |
YOLOv5s | 0.897 | 0.879 | 0.888 | 0.926 | 0.750 | 7089004 | 55 |
YOLOv7 | 0.949 | 0.928 | 0.939 | 0.957 | 0.772 | 36512236 | 71 |
YOLOv8 | 0.980 | 0.956 | 0.968 | 0.959 | 0.841 | 3007013 | 64 |
YOLO-CSM | 0.987 | 0.968 | 0.977 | 0.989 | 0.818 | 40515194 | 66 |
Model | Precision | Recall | F1_Score | mAP (0.5) | Parameter Numbers |
---|---|---|---|---|---|
YOLOv7 | 0.949 | 0.928 | 0.939 | 0.957 | 36,512,236 |
YOLOv7_Four_layers | 0.971 | 0.915 | 0.942 | 0.975 | 37,057,952 |
YOLOv7_Swin | 0.960 | 0.970 | 0.965 | 0.959 | 43,423,126 |
YOLOv7_CBAM | 0.981 | 0.951 | 0.966 | 0.970 | 37,787,154 |
YOLOv7_CBAM_Swin | 0.970 | 0.946 | 0.958 | 0.980 | 44,698,044 |
YOLOv7-CSM | 0.987 | 0.968 | 0.977 | 0.989 | 40,515,194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Ma, L.; Sui, X.; Guo, N.; Yang, F.; Yang, X.; Huang, Y.; Wang, X. YOLO-CSM-Based Component Defect and Foreign Object Detection in Overhead Transmission Lines. Electronics 2024, 13, 123. https://doi.org/10.3390/electronics13010123
Liu C, Ma L, Sui X, Guo N, Yang F, Yang X, Huang Y, Wang X. YOLO-CSM-Based Component Defect and Foreign Object Detection in Overhead Transmission Lines. Electronics. 2024; 13(1):123. https://doi.org/10.3390/electronics13010123
Chicago/Turabian StyleLiu, Chunyang, Lin Ma, Xin Sui, Nan Guo, Fang Yang, Xiaokang Yang, Yan Huang, and Xiao Wang. 2024. "YOLO-CSM-Based Component Defect and Foreign Object Detection in Overhead Transmission Lines" Electronics 13, no. 1: 123. https://doi.org/10.3390/electronics13010123
APA StyleLiu, C., Ma, L., Sui, X., Guo, N., Yang, F., Yang, X., Huang, Y., & Wang, X. (2024). YOLO-CSM-Based Component Defect and Foreign Object Detection in Overhead Transmission Lines. Electronics, 13(1), 123. https://doi.org/10.3390/electronics13010123