Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry
Abstract
:1. Introduction
2. Thin-Film Transistors and Active-Matrix Array
3. Active-Matrix-Based Displays
3.1. Liquid Crystal Display (LCD)
3.2. Light-Emitting Diode (LED)
3.3. Light-Emitting Electrochemical Cell (LEC)
4. Active-Matrix-Based Sensors
4.1. Photosensors
4.2. Gas Sensor
4.3. Pressure Sensors
4.4. Strain Sensors
4.5. Temperature Sensors
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, H.; Shin, E.S.; Liu, A.; Ji, D.; Xu, Y.; Noh, Y.Y. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 2020, 30, 1904588. [Google Scholar] [CrossRef]
- Wu, W.-J.; Chen, J.-W.; Wang, J.-S.; Zhou, L.; Tao, H.; Zou, J.-H.; Xu, M.; Wang, L.; Peng, J.-B.; Chan, M. High-resolution flexible AMOLED display integrating gate driver by metal–oxide TFTs. IEEE Electron Device Lett. 2018, 39, 1660–1663. [Google Scholar] [CrossRef]
- Meng, W.; Xu, F.; Yu, Z.; Tao, T.; Shao, L.; Liu, L.; Li, T.; Wen, K.; Wang, J.; He, L. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Shao, L.-L.; Zheng, Y.-Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H.-S.P.; Huang, T.-C. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161. [Google Scholar] [CrossRef] [PubMed]
- Janneck, R.; Nowack, T.S.; De Roose, F.; Ali, H.; Dehaene, W.; Heremans, P.; Genoe, J.; Rolin, C. Integration of highly crystalline C8-BTBT thin-films into simple logic gates and circuits. Org. Electron. 2019, 67, 64–71. [Google Scholar] [CrossRef]
- Andersson Ersman, P.; Lassnig, R.; Strandberg, J.; Tu, D.; Keshmiri, V.; Forchheimer, R.; Fabiano, S.; Gustafsson, G.; Berggren, M. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 2019, 10, 5053. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; woon Jang, S.; Lim, J.-H.; Kim, H.; Kang, D.-H.; Kim, K.-H.; Seo, S.; Heo, K.; Shin, C.; Yu, H.-Y. Polarity control in a single transition metal dichalcogenide (TMD) transistor for homogeneous complementary logic circuits. Nanoscale 2019, 11, 12871–12877. [Google Scholar] [CrossRef] [PubMed]
- Polyushkin, D.K.; Wachter, S.; Mennel, L.; Paur, M.; Paliy, M.; Iannaccone, G.; Fiori, G.; Neumaier, D.; Canto, B.; Mueller, T. Analogue two-dimensional semiconductor electronics. Nat. Electron. 2020, 3, 486–491. [Google Scholar] [CrossRef]
- Lu, W.; Lu, C.; Yang, G.; Liu, M.; Chen, K.; Liao, F.; Duan, X.; Lu, N.; Li, L. Monolithically Stacked Two Layers of a-IGZO-Based Transistors Upon a-IGZO-Based Analog/Logic Circuits. IEEE Trans. Electron Devices 2023, 70, 1697–1701. [Google Scholar] [CrossRef]
- Xu, Y.; Ruan, C.-P.; Zhou, L.; Zou, J.-H.; Xu, M.; Wu, W.-J.; Wang, L.; Peng, J.-B. A 256 × 256, 50-μm pixel pitch OPD image sensor based on an IZO TFT backplane. IEEE Sens. J. 2021, 21, 20824–20832. [Google Scholar] [CrossRef]
- Yokota, T.; Fukuda, K.; Someya, T. Recent progress of flexible image sensors for biomedical applications. Adv. Mater. 2021, 33, 2004416. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, C.; Yang, G.; Lou, Q.; Lin, Q.; Zhang, S.; Zhou, H. Monolithic Integration of Perovskite Photoabsorbers with IGZO Thin-Film Transistor Backplane for Phototransistor-Based Image Sensor. Adv. Mater. Technol. 2023, 8, 2200679. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, B.; Zeng, J.; Yu, Z.; Zhao, Y.; Xie, J.; Lan, R.; Ma, Z.; Pan, L.; Cao, K. Sub-thermionic, ultra-high-gain organic transistors and circuits. Nat. Commun. 2021, 12, 1928. [Google Scholar] [CrossRef] [PubMed]
- Casula, G.; Lai, S.; Matino, L.; Santoro, F.; Bonfiglio, A.; Cosseddu, P. Printed, low-voltage, all-organic transistors and complementary circuits on paper substrate. Adv. Electron. Mater. 2020, 6, 1901027. [Google Scholar] [CrossRef]
- Jiang, C.; Choi, H.W.; Cheng, X.; Ma, H.; Hasko, D.; Nathan, A. Printed subthreshold organic transistors operating at high gain and ultralow power. Science 2019, 363, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Yoo, H.; Kim, C.-H. Revealing Three-in-One Nature of Organic Negative Transconductance Transistors. IEEE Trans. Electron Devices 2022, 69, 5149–5154. [Google Scholar] [CrossRef]
- Kim, C.-H. Contact resistance in organic transistors: Use it or remove it. Appl. Phys. Rev. 2020, 7, 031306. [Google Scholar] [CrossRef]
- Carlos, E.; Leppäniemi, J.; Sneck, A.; Alastalo, A.; Deuermeier, J.; Branquinho, R.; Martins, R.; Fortunato, E. Printed, highly stable metal oxide thin-film transistors with ultra-thin high-κ oxide dielectric. Adv. Electron. Mater. 2020, 6, 1901071. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Xu, G.; Cai, L.; Han, T.H.; Zhang, A.; Wu, Q.; Wang, R.; Huang, T.; Cheng, P. High Performance Indium-Gallium-Zinc Oxide Thin Film Transistor via Interface Engineering. Adv. Funct. Mater. 2020, 30, 2003285. [Google Scholar] [CrossRef]
- Bukke, R.N.; Mude, N.N.; Saha, J.K.; Jang, J. High performance of a-IZTO TFT by purification of the semiconductor oxide precursor. Adv. Mater. Interfaces 2019, 6, 1900277. [Google Scholar] [CrossRef]
- Li, G.; Wu, Y.; Li, Y.; Hong, Y.; Zhao, X.; Reyes, P.I.; Lu, Y. Early stage detection of Staphylococcus epidermidis biofilm formation using MgZnO dual-gate TFT biosensor. Biosens. Bioelectron. 2020, 151, 111993. [Google Scholar] [CrossRef]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Daus, A.; Vaziri, S.; Chen, V.; Köroğlu, Ç.; Grady, R.W.; Bailey, C.S.; Lee, H.R.; Schauble, K.; Brenner, K.; Pop, E. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 2021, 4, 495–501. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Wang, F.; Ye, J.; He, T.; Wu, F.; Peng, M.; Wu, P.; Chen, Y.; Zhong, F. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liang, S.; Xu, L.; Liu, L.; Hu, Q.; Fan, C.; Liu, Y.; Han, J.; Zhang, Z.; Peng, L.M. Enhancement-Mode Field-Effect Transistors and High-Speed Integrated Circuits Based on Aligned Carbon Nanotube Films. Adv. Funct. Mater. 2022, 32, 2104539. [Google Scholar] [CrossRef]
- Xu, L.; Qiu, C.; Peng, L.-m.; Zhang, Z. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res. 2021, 14, 976–981. [Google Scholar] [CrossRef]
- Pitner, G.; Zhang, Z.; Lin, Q.; Su, S.-K.; Gilardi, C.; Kuo, C.; Kashyap, H.; Weiss, T.; Yu, Z.; Chao, T.-A. Sub-0.5 nm interfacial dielectric enables superior electrostatics: 65 mV/dec top-gated carbon nanotube FETs at 15 nm gate length. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 3.5.1–3.5.4. [Google Scholar]
- Bornemann, S.; Gülink, J.; Moro, V.; Gil, J.C.; Wolter, S.; Schöttler, G.; Bezshlyakh, D.; Prades, J.D.; Dieguez, A.; Waag, A. Processing and characterization of monolithic passive-matrix GaN-based microLED arrays with pixel sizes from 5 to 50 µm. IEEE Photonics J. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Nau, S.; Wolf, C.; Sax, S.; List-Kratochvil, E.J. Organic Non-Volatile Resistive Photo-Switches for Flexible Image Detector Arrays. Adv. Mater. 2015, 27, 1048–1052. [Google Scholar] [CrossRef]
- Choi, M.; Jang, B.; Lee, W.; Lee, S.; Kim, T.W.; Lee, H.J.; Kim, J.H.; Ahn, J.H. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv. Funct. Mater. 2017, 27, 1606005. [Google Scholar] [CrossRef]
- Park, Y.J.; Sharma, B.K.; Shinde, S.M.; Kim, M.-S.; Jang, B.; Kim, J.-H.; Ahn, J.-H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Oh, B.; Jo, S.; Park, S.; An, H.S.; Lee, S.; Cheong, W.H.; Yoo, S.; Park, J.U. Human-interactive, active-matrix displays for visualization of tactile pressures. Adv. Mater. Technol. 2019, 4, 1900082. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, H.; Wu, Q.; Dai, F.; Lau, T.K.; Lu, X.; Yang, T.; Wang, Z.; Liu, X.; Liu, C. Guided Formation of Large Crystals of Organic and Perovskite Semiconductors by an Ultrasonicated Dispenser and Their Application as the Active Matrix of Photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 39921–39932. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Zou, T.; Yan, L.; Liu, C.; Du, X.; Zhang, S.; Zhou, H. Spin-On-Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Active-Matrix Near-Infrared Imaging. Adv. Mater. Technol. 2019, 5, 1900752. [Google Scholar] [CrossRef]
- Xuan, Y.; Lu, Y.; Honda, S.; Arie, T.; Akita, S.; Takei, K. Active-Matrix-Based Flexible Optical Image Sensor. Adv. Mater. Technol. 2021, 6, 2100259. [Google Scholar] [CrossRef]
- Ji, S.; Jang, J.; Hwang, J.C.; Lee, Y.; Lee, J.H.; Park, J.U. Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable Pressure Sensor Arrays. Adv. Mater. Technol. 2019, 5, 1900928. [Google Scholar] [CrossRef]
- Baek, S.; Lee, Y.; Baek, J.; Kwon, J.; Kim, S.; Lee, S.; Strunk, K.P.; Stehlin, S.; Melzer, C.; Park, S.M.; et al. Spatiotemporal Measurement of Arterial Pulse Waves Enabled by Wearable Active-Matrix Pressure Sensor Arrays. ACS Nano 2022, 16, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Xu, D.; Wang, P.; Lin, Z.; Zhou, J.; Jia, C.; Huang, J.; Li, S.; Huang, Y.; Duan, X. Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 2021, 14, 3395–3401. [Google Scholar] [CrossRef]
- Rustagi, S.; Singh, N.; Fang, W.; Buddharaju, K.; Omampuliyur, S.; Teo, S.; Tung, C.; Lo, G.; Balasubramanian, N.; Kwong, D. CMOS inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electron Device Lett. 2007, 28, 1021–1024. [Google Scholar] [CrossRef]
- Singh, S. Fully solution-processed carbon nanotubes thin film transistors and PMOS inverters on glass substrate. Flexible and Printed Electronics 2023, 8, 015011. [Google Scholar] [CrossRef]
- Bhalerao, S.R.; Lupo, D.; Berger, P.R. Flexible, solution-processed, indium oxide (In2O3) thin film transistors (TFT) and circuits for internet-of-things (IoT). Mater. Sci. Semicond. Process. 2022, 139, 106354. [Google Scholar] [CrossRef]
- Li, X.; Ren, Y.; Wang, X.; Shao, S.; Li, H.; Wu, L.; Liu, X.; Zhao, J. A universal method for high-efficiency immobilization of semiconducting carbon nanotubes toward fully printed paper-based electronics. Adv. Electron. Mater. 2021, 7, 2001025. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Y.; An, Z.; Li, Z.; Zhang, C. Thin-film transistors based on wide bandgap Ga2O3 films grown by aqueous-solution spin-coating method. Micro Nano Lett. 2019, 14, 1052–1055. [Google Scholar] [CrossRef]
- Ruzgar, S.; Caglar, M. The effect of Sn on electrical performance of zinc oxide based thin film transistor. J. Mater. Sci. Mater. Electron. 2019, 30, 485–490. [Google Scholar] [CrossRef]
- Shao, F.; Wan, Q. Recent progress on jet printing of oxide-based thin film transistors. J. Phys. D Appl. Phys. 2019, 52, 143002. [Google Scholar] [CrossRef]
- Singh, S.; Takeda, Y.; Matsui, H.; Tokito, S. Flexible PMOS inverter and NOR gate using inkjet-printed dual-gate organic thin film transistors. IEEE Electron Device Lett. 2020, 41, 409–412. [Google Scholar] [CrossRef]
- Zschieschang, U.; Klauk, H.; Borchert, J.W. High-Resolution Lithography for High-Frequency Organic Thin-Film Transistors. Adv. Mater. Technol. 2023, 8, 2201888. [Google Scholar] [CrossRef]
- Cui, N.; Ren, H.; Tang, Q.; Zhao, X.; Tong, Y.; Hu, W.; Liu, Y. Fully transparent conformal organic thin-film transistor array and its application as LED front driving. Nanoscale 2018, 10, 3613–3620. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seo, J.; Park, T.; Yoo, H. Interface Trap-Free, 100% Yield, Wafer-Scale, Non-Volatile Optically-Guided Memory Array from Cumulatively-Stacked Small Molecules/Fluoropolymer/Copper-Oxide Nanoparticles Heterostructure. Adv. Electron. Mater. 2022, 8, 2200752. [Google Scholar] [CrossRef]
- Kuribara, K.; Wang, H.; Uchiyama, N.; Fukuda, K.; Yokota, T.; Zschieschang, U.; Jaye, C.; Fischer, D.; Klauk, H.; Yamamoto, T. Organic transistors with high thermal stability for medical applications. Nat. Commun. 2012, 3, 723. [Google Scholar] [CrossRef]
- Cong, S.; Cao, Y.; Fang, X.; Wang, Y.; Liu, Q.; Gui, H.; Shen, C.; Cao, X.; Kim, E.S.; Zhou, C. Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays. ACS Nano 2016, 10, 10068–10074. [Google Scholar] [CrossRef]
- Ohara, H.; Sasaki, T.; Noda, K.; Ito, S.; Sasaki, M.; Endo, Y.; Yoshitomi, S.; Sakata, J.; Serikawa, T.; Yamazaki, S. 4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In–Ga–Zn-Oxide thin-film transistors with suppressed variation. Jpn. J. Appl. Phys. 2010, 49, 03CD02. [Google Scholar] [CrossRef]
- Mizukami, M.; Oku, S.; Cho, S.-I.; Tatetsu, M.; Abiko, M.; Mamada, M.; Sakanoue, T.; Suzuri, Y.; Kido, J.; Tokito, S. A solution-processed organic thin-film transistor backplane for flexible multiphoton emission organic light-emitting diode displays. IEEE Electron Device Lett. 2015, 36, 841–843. [Google Scholar] [CrossRef]
- Zhao, T.-Y.; Zhang, D.-D.; Qu, T.-Y.; Fang, L.-L.; Zhu, Q.-B.; Sun, Y.; Cai, T.-H.; Chen, M.-L.; Wang, B.-W.; Du, J.-H. Flexible 64× 64 pixel AMOLED displays driven by uniform carbon nanotube thin-film transistors. ACS Appl. Mater. Interfaces 2019, 11, 11699–11705. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Cho, E.-S.; Jeon, Y.; Kwon, S.J. Characterization of the material and electrical properties depending on the Mg: Ag ratio as a cathode for TEOLED. Mater. Chem. Phys. 2023, 303, 127742. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, Y.J.; Kymissis, I.; Jeon, Y.; Kim, C.-H. Frequency-triggered circuit transition in organic light-emitting diodes probed by impedance spectroscopy. J. Mater. Chem. C 2023, 11, 9670–9677. [Google Scholar] [CrossRef]
- Hwangbo, S.; Hu, L.; Hoang, A.T.; Choi, J.Y.; Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Chen, J.; Chen, Z.; Liang, L.; Hu, J.; Shen, W.; Li, Z.; Zeng, H. Progress in Color Conversion Technology for Micro-LED. Adv. Mater. Technol. 2023, 8, 2200632. [Google Scholar] [CrossRef]
- Li, Y.; He, P.; Chen, S.; Lan, L.; Dai, X.; Peng, J. Inkjet-printed oxide thin-film transistors based on nanopore-free aqueous-processed dielectric for active-matrix quantum-dot light-emitting diode displays. ACS Appl. Mater. Interfaces 2019, 11, 28052–28059. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Yang, J.; Kang, K.; Kim, D.C.; Choi, C.; Park, C.; Kim, S.J.; Chae, S.I.; Kim, T.-H.; Kim, J.H. Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149. [Google Scholar] [CrossRef]
- Peng, B.; Ren, X.; Wang, Z.; Wang, X.; Roberts, R.C.; Chan, P.K. High performance organic transistor active-matrix driver developed on paper substrate. Sci. Rep. 2014, 4, 6430. [Google Scholar] [CrossRef]
- Um, J.G.; Jeong, D.Y.; Jung, Y.; Moon, J.K.; Jung, Y.H.; Kim, S.; Kim, S.H.; Lee, J.S.; Jang, J. Active-Matrix GaN µ-LED Display Using Oxide Thin-Film Transistor Backplane and Flip Chip LED Bonding. Adv. Electron. Mater. 2019, 5, 1800617. [Google Scholar] [CrossRef]
- Choi, M.; Park, Y.J.; Sharma, B.K.; Bae, S.-R.; Kim, S.Y.; Ahn, J.-H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4, eaas8721. [Google Scholar] [CrossRef]
- Baek, G.W.; Seo, S.G.; Hahm, D.; Kim, Y.J.; Kim, K.; Lee, T.; Kim, J.; Bae, W.K.; Jin, S.H.; Kwak, J. Optimum Design Configuration of Thin-Film Transistors And Quantum-Dot Light-Emitting Diodes for Active-Matrix Displays. Adv. Mater. 2023, 35, 2304717. [Google Scholar] [CrossRef]
- Kaminishi, D.; Ozaki, H.; Ohno, Y.; Maehashi, K.; Inoue, K.; Matsumoto, K.; Seri, Y.; Masuda, A.; Matsumura, H. Air-stable n-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition. Appl. Phys. Lett. 2005, 86, 113115. [Google Scholar] [CrossRef]
- Filiatrault, H.L.; Porteous, G.C.; Carmichael, R.S.; Davidson, G.J.; Carmichael, T.B. Stretchable light-emitting electrochemical cells using an elastomeric emissive material. Adv. Mater. 2012, 24, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics 2013, 7, 817–824. [Google Scholar] [CrossRef]
- Liang, J.; Chu, M.; Zhou, Z.; Yan, Y.; Zhao, Y.S. Optically pumped lasing in microscale light-emitting electrochemical cell arrays for multicolor displays. Nano Lett. 2020, 20, 7116–7122. [Google Scholar] [CrossRef] [PubMed]
- Meier, S.B.; Tordera, D.; Pertegas, A.; Roldan-Carmona, C.; Orti, E.; Bolink, H.J. Light-emitting electrochemical cells: Recent progress and future prospects. Mater. Today 2014, 17, 217–223. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhang, Z.; Molina-Lopez, F.; Wang, G.-J.N.; Schroeder, B.C.; Yan, X.; Zeng, Y.; Zhao, O.; Tran, H. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362. [Google Scholar] [CrossRef]
- Hong, S.; Choi, S.H.; Park, J.; Yoo, H.; Oh, J.Y.; Hwang, E.; Yoon, D.H.; Kim, S. Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 2020, 14, 9796–9806. [Google Scholar] [CrossRef]
- Li, P.; Shan, X.; Lin, Y.; Meng, X.; Ma, J.; Wang, Z.; Zhao, X.; Li, B.; Liu, W.; Xu, H. Tin Doping Induced High-Performance Solution-Processed Ga2O3 Photosensor toward Neuromorphic Visual System. Adv. Funct. Mater. 2023, 33, 2303584. [Google Scholar] [CrossRef]
- Hong, S.; Baek, S.; Can, T.T.T.; Choi, W.S.; Kim, S. Fabrication of Highly Photosensitive MoS2 Photodetector Films Using Rapid Electrohydrodynamic-Jet Printing Process. Adv. Electron. Mater. 2022, 8, 2101063. [Google Scholar] [CrossRef]
- Li, M.; Zheng, J.; Wang, X.; Yu, R.; Wang, Y.; Qiu, Y.; Cheng, X.; Wang, G.; Chen, G.; Xie, K. Light-responsive self-strained organic semiconductor for large flexible OFET sensing array. Nat. Commun. 2022, 13, 4912. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhao, Y.; Liu, H. Room-temperature semiconductor gas sensors: Challenges and opportunities. ACS Sens. 2022, 7, 3582–3597. [Google Scholar] [CrossRef]
- Shaji, M.; Saji, K.; Jayaraj, M. Low temperature operated ZTO thin film transistor based gas sensor for selective detection of H2S. Mater. Sci. Semicond. Process. 2022, 150, 106927. [Google Scholar] [CrossRef]
- Kwon, H.; Yoo, H.; Nakano, M.; Takimiya, K.; Kim, J.-J.; Kim, J.K. Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors. RSC Adv. 2020, 10, 1910–1916. [Google Scholar] [CrossRef]
- Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970. [Google Scholar] [CrossRef] [PubMed]
- Hassinen, T.; Eiroma, K.; Mäkelä, T.; Ermolov, V. Printed pressure sensor matrix with organic field-effect transistors. Sens. Actuators A Phys. 2015, 236, 343–348. [Google Scholar] [CrossRef]
- Trung, T.Q.; Tien, N.T.; Kim, D.; Jang, M.; Yoon, O.J.; Lee, N.E. A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater. 2014, 24, 117–124. [Google Scholar] [CrossRef]
- Dubey, P.K.; Yogeswaran, N.; Liu, F.; Vilouras, A.; Kaushik, B.K.; Dahiya, R. Monolayer MoSe₂-based tunneling field effect transistor for ultrasensitive strain sensing. IEEE Trans. Electron Devices 2020, 67, 2140–2146. [Google Scholar] [CrossRef]
- Wang, H.; Tong, Y.; Zhao, X.; Tang, Q.; Liu, Y. Flexible, high-sensitive, and wearable strain sensor based on organic crystal for human motion detection. Org. Electron. 2018, 61, 304–311. [Google Scholar] [CrossRef]
- Zhu, C.; Chortos, A.; Wang, Y.; Pfattner, R.; Lei, T.; Hinckley, A.C.; Pochorovski, I.; Yan, X.; To, J.W.-F.; Oh, J.Y. Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 2018, 1, 183–190. [Google Scholar] [CrossRef]
- Seo, H.; Aihara, S.; Watabe, T.; Ohtake, H.; Sakai, T.; Kubota, M.; Egami, N.; Hiramatsu, T.; Matsuda, T.; Furuta, M.; et al. A 128 × 96 Pixel Stack-Type Color Image Sensor: Stack of Individual Blue-, Green-, and Red-Sensitive Organic Photoconductive Films Integrated with a ZnO Thin Film Transistor Readout Circuit. Jpn. J. Appl. Phys. 2011, 50, 024103. [Google Scholar] [CrossRef]
- Park, T.; Hur, J. Self-powered low-cost UVC sensor based on organic-inorganic heterojunction for partial discharge detection. Small 2021, 17, 2100695. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Li, C.; Lu, Y.; Tong, X.-W.; Liang, F.-X.; Zhao, X.-Y.; Wu, D.; Xie, C.; Luo, L.-B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. J. Phys. Chem. Lett. 2019, 10, 5343–5350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Peng, M.; Liu, Y.; Zhang, T.; Zhu, Q.; Lei, H.; Liu, S.; Tao, Y.; Li, L.; Wen, Z. Flexible self-powered real-time ultraviolet photodetector by coupling triboelectric and photoelectric effects. ACS Appl. Mater. Interfaces 2020, 12, 19384–19392. [Google Scholar] [CrossRef]
- Li, D.; Jia, Z.; Tang, Y.; Song, C.; Liang, K.; Ren, H.; Li, F.; Chen, Y.; Wang, Y.; Lu, X.; et al. Inorganic-Organic Hybrid Phototransistor Array with Enhanced Photogating Effect for Dynamic Near-Infrared Light Sensing and Image Preprocessing. Nano Lett. 2022, 22, 5434–5442. [Google Scholar] [CrossRef]
- Li, D.; Du, J.; Tang, Y.; Liang, K.; Wang, Y.; Ren, H.; Wang, R.; Meng, L.; Zhu, B.; Li, Y. Flexible and Air-Stable Near-Infrared Sensors Based on Solution-Processed Inorganic–Organic Hybrid Phototransistors. Adv. Funct. Mater. 2021, 31, 2105887. [Google Scholar] [CrossRef]
- Takahashi, T.; Yu, Z.; Chen, K.; Kiriya, D.; Wang, C.; Takei, K.; Shiraki, H.; Chen, T.; Ma, B.; Javey, A. Carbon nanotube active-matrix backplanes for mechanically flexible visible light and X-ray imagers. Nano Lett. 2013, 13, 5425–5430. [Google Scholar] [CrossRef]
- Kim, J.; Jo, C.; Kim, M.G.; Park, G.S.; Marks, T.J.; Facchetti, A.; Park, S.K. Vertically Stacked Full Color Quantum Dots Phototransistor Arrays for High-Resolution and Enhanced Color-Selective Imaging. Adv. Mater. 2022, 34, 2106215. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Preciado, L.A.; Baek, S.; Strobel, N.; Xia, K.; Seiberlich, M.; Park, S.-m.; Lemmer, U.; Jung, S.; Hernandez-Sosa, G. Monolithically printed all-organic flexible photosensor active matrix. NPJ Flex. Electron. 2023, 7, 6. [Google Scholar] [CrossRef]
- Kim, S.; Park, H.; Choo, S.; Baek, S.; Kwon, Y.; Liu, N.; Yang, J.Y.; Yang, C.-W.; Yoo, G.; Kim, S. Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. Commun. Mater. 2020, 1, 86. [Google Scholar] [CrossRef]
- Shin, S.-H.; Ji, S.; Choi, S.; Pyo, K.-H.; Wan An, B.; Park, J.; Kim, J.; Kim, J.-Y.; Lee, K.-S.; Kwon, S.-Y. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Commun. 2017, 8, 14950. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kim, H.; Ji, S.; Kim, H.J.; Kang, M.S.; Kim, T.S.; Won, J.-e.; Lee, J.-H.; Cheon, J.; Kang, K. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 2019, 20, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tang, J.; Yuan, J.; Li, Y.; Dai, Y.; Yao, J.; Zhang, Q.; Ding, S.; Li, T.; Zhang, R. Large-scale integrated flexible tactile sensor Array for sensitive smart robotic touch. ACS Nano 2022, 16, 16784–16795. [Google Scholar] [CrossRef] [PubMed]
- Karner-Petritz, E.; Petritz, A.; Uemura, T.; Namba, N.; Araki, T.; Sekitani, T.; Stadlober, B. Ultraflexible Organic Active Matrix Sensor Sheet for Tactile and Biosignal Monitoring. Adv. Electron. Mater. 2023, 9, 2201333. [Google Scholar] [CrossRef]
- Sun, Q.; Seung, W.; Kim, B.J.; Seo, S.; Kim, S.W.; Cho, J.H. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 2015, 27, 3411–3417. [Google Scholar] [CrossRef]
- Oh, J.Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097. [Google Scholar] [CrossRef]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Li, M.; Chen, S.; Fan, B.; Wu, B.; Guo, X. Printed flexible strain sensor array for bendable interactive surface. Adv. Funct. Mater. 2020, 30, 2003214. [Google Scholar] [CrossRef]
- Zhao, J.; Wei, Z.; Li, Z.; Yu, J.; Tang, J.; Zhang, G.; Wang, Z. Skin-Inspired High-Performance Active-matrix Circuitry for Multimodal User-Interaction. Adv. Funct. Mater. 2021, 31, 2105480. [Google Scholar] [CrossRef]
- Hong, S.Y.; Lee, Y.H.; Park, H.; Jin, S.W.; Jeong, Y.R.; Yun, J.; You, I.; Zi, G.; Ha, J.S. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 2016, 28, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Pei, K.; Peng, B.; Zhang, Z.; Wang, Z.; Wang, X.; Chan, P.K. A low-operating-power and flexible active-matrix organic-transistor temperature-sensor array. Adv. Mater. 2016, 28, 4832–4838. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jeong, M.W.; Nam, T.U.; Vo, N.T.P.; Jung, K.H.; Lee, T.I.; Oh, J.Y. Intrinsically Stretchable Subthreshold Organic Transistors for Highly Sensitive Low-Power Skin-Like Active-Matrix Temperature Sensors. Adv. Funct. Mater. 2023, 34, 2305252. [Google Scholar] [CrossRef]
Application | Transistor Materials | Emission Materials | Wavelength Band | Quantum Efficiency | Array Scale | Ref. |
---|---|---|---|---|---|---|
LCD | CNT | - | - | - | 5 × 5 | [52] |
micro-LED | DNTT | micro-LED module | White | - | 8 × 8 | [62] |
micro-LED | a-IGZO | GaN | 456 nm | - | 384 × 128 | [63] |
OLED | MoS2 | Alq3/C545T | - | - | 6 × 6 | [64] |
QDLED | CNT | CdSe/CdxZn1−xSe/ZnS QDs | 609 nm | 19.1% | 5 × 5 | [65] |
OLEC | PII2T | SY/ionic elastomer | - | - | 5 × 5 | [71] |
Sensor Type | Transistor Materials | Sensor Materials | Sensitivity | |Operating Voltage| | Array Scale | Ref. |
---|---|---|---|---|---|---|
Photo | CNT | P3HT:PCBM | 0.15 AW−1 | 5 V | 18 × 18 | [91] |
Photo | In2O3 | PTB7-Th/BTPV-4F | 1393 AW−1 | 10 V | 16 × 16 | [89] |
Photo | a-IGZO | CdS QD, CdSe QD | 5.2 × 103 AW−1 | 15 V | 12 × 12 | [92] |
Photo | DPP-DTT | P3HT-IDTBR | 0.356 AW−1 | 10 V | 10 × 10 | [93] |
Gas | MoS2 | MoS2 | - | 10 V | 7 × 6 | [94] |
Pressure | Graphene | Graphene | 2.05 × 10−4 kPa−1 | 30 V | 12 × 12 | [95] |
Pressure | MoS2 | MoS2 | 0.045 Mpa−1 | 60 V | 20 × 20 | [96] |
Pressure | CNT | MWCNTs/TPU composite | 385 kPa−1 | 3 V | 64 × 64 | [97] |
Pressure | DNTT | P(VDF:TrFE) | 0.12 nC N−1 | 3 V | 12 × 12 | [98] |
Strain | Graphene | P(VDF:TrFE) | Gauge factor (GF): 69 | 1 V | 4 × 4 | [99] |
Strain | DPP-PDCA-PDMS | DPP-PDCA-PDMS | GF: 5.75 × 105 | 60 V | 5 × 5 | [100] |
Strain | - | AgNWs | - | - | 4 × 9 | [102] |
Strain | MoS2 | Graphene | GF: 412 | 5 V | 10 × 10 | [103] |
Temperature | CNT | polyaniline nanofiber | 1.0% °C −1 | 10 V | 5 × 5 | [104] |
Temperature | a-IGZO | Mxene | - | 4 V | 16 × 16 | [105] |
Temperature | DPPT-TT | DPPT-TT | 9% °C−1 | 1 V | 5 × 5 | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Yoo, H. Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry. Electronics 2024, 13, 241. https://doi.org/10.3390/electronics13010241
Kim S, Yoo H. Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry. Electronics. 2024; 13(1):241. https://doi.org/10.3390/electronics13010241
Chicago/Turabian StyleKim, Seongjae, and Hocheon Yoo. 2024. "Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry" Electronics 13, no. 1: 241. https://doi.org/10.3390/electronics13010241
APA StyleKim, S., & Yoo, H. (2024). Active-Matrix Array Based on Thin-Film Transistors Using Emerging Materials for Application: From Lab to Industry. Electronics, 13(1), 241. https://doi.org/10.3390/electronics13010241