Radar Signal Behavior in Maritime Environments: Falling Rain Effects
Abstract
:1. Introduction
2. Theoretical Model Design
2.1. Scattering by Falling Rain
2.2. Gaseous Absorption
2.3. Backscattering by Ocean Surface
3. Channel Modeling and Results Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cordner, L. Rethinking maritime security in the Indian Ocean Region. J. Indian Ocean Reg. 2010, 6, 67–85. [Google Scholar] [CrossRef]
- Biden, J. National Security Strategy; The White House: Washington, DC, USA, 2022. [Google Scholar]
- Pope, A.; Wagner, P.; Johnson, R.; Shutler, J.D.; Baeseman, J.; Newman, L. Community review of Southern Ocean satellite data needs. Antarct. Sci. 2017, 29, 97–138. [Google Scholar] [CrossRef]
- Leinonen, J.; Szyrmer, W. Radar signatures of snowflake riming: A modeling study. Earth Space Sci. 2015, 2, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, Q.; Liu, R.; Sletten, M.A.; Duncan, J.H. A Model of Radar Backscatter of Rain-Generated Stalks on the Ocean Surface. IEEE Trans. Geosci. Remote 2017, 55, 767–776. [Google Scholar] [CrossRef]
- Xu, F.; Li, X.; Wang, P.; Yang, J.; Pichel, W.G.; Jin, Y. A Backscattering Model of Rainfall Over Rough Sea Surface for Synthetic Aperture Radar. IEEE Trans. Geosci. Remote 2015, 53, 3042–3054. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Chen, Y.; Ge, J.; Zhao, N. Adversarial Attack and Defense on Deep Learning for Air Transportation Communication Jamming. IEEE Trans. Intell. Transp. 2023, 1–14. [Google Scholar] [CrossRef]
- Huehnerfuss, H.; Alpers, W.; Cross, A.; Garrett, W.D.; Keller, W.C.; Plant, W.J.; Schuler, D.L.; Lange, P.A.; Schlude, F. The modification of X and L band radar signals by monomolecular sea slicks. J. Geophys. Res. 1983, 88, 9817–9822. [Google Scholar] [CrossRef]
- Phillips, O.M. Radar returns from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr. 1988, 18, 1065–1074. [Google Scholar] [CrossRef]
- Palmer, A.J.; Kropfli, R.A.; Fairall, C.W. Signatures of deterministic chaos in radar sea clutter and ocean surface winds. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 613–616. [Google Scholar] [CrossRef]
- Jayasinghe, A.; Elliott, S.; Gibson, G.A.; Vandemark, D. The Role of Phytoplankton Biomacromolecules in Controlling Ocean Surface Roughness. Atmosphere 2022, 13, 2101. [Google Scholar] [CrossRef]
- Prakash, K.R.; Pant, V.; Udaya Bhaskar, T.V.S.; Chandra, N. What Made the Sustained Intensification of Tropical Cyclone Fani in the Bay of Bengal? An Investigation Using Coupled Atmosphere–Ocean Model. Atmosphere 2022, 13, 535. [Google Scholar] [CrossRef]
- Kwon, K.; Choi, B.; Myoung, S.; Sim, H. Propagation of a Meteotsunami from the Yellow Sea to the Korea Strait in April 2019. Atmosphere 2021, 12, 1083. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; University of Michigan Press: Ann Arbor, MI, USA, 2013. [Google Scholar]
- Liu, X.; Zheng, Q.; Liu, R.; Wang, D.; Duncan, J.H.; Huang, S.J. A study of radar backscattering from water surface in response to rainfall. J. Geophys. Res. Oceans 2016, 121, 1546–1562. [Google Scholar] [CrossRef]
- Fedorchenko, A.I.; Wang, A. On some common features of drop impact on liquid surfaces. Phys. Fluids 2004, 16, 1349–1365. [Google Scholar] [CrossRef]
- Le Méhauté, B. Gravity-capillary rings generated by water drops. J. Fluid Mech. 1988, 197, 415–427. [Google Scholar] [CrossRef]
- Bliven, L.F.; Sobieski, P.W.; Craeye, C. Rain generated ring-waves: Measurements and modelling for remote sensing. Int. J. Remote Sens. 1997, 18, 221–228. [Google Scholar] [CrossRef]
- Lemaire, D.; Bliven, L.F.; Craeye, C.; Sobieski, P. Drop size effects on rain-generated ring-waves with a view to remote sensing applications. Int. J. Remote Sens. 2002, 23, 2345–2357. [Google Scholar] [CrossRef]
- Le Méhauté, B.; Khangaonkar, T. Dynamic interaction of intense rain with water waves. J. Phys. Oceanogr. 1990, 20, 1805–1812. [Google Scholar] [CrossRef]
- Tsimplis, M.; Thorpe, S.A. Wave damping by rain. Nature 1989, 342, 893–895. [Google Scholar] [CrossRef]
- Contreras, R.F.; Plant, W.J. Surface effect of rain on microwave backscatter from the ocean: Measurements and modeling. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar Marine User’s Manual; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2004. [Google Scholar]
- Fu, L.; Holt, B. SEASAT Views Oceans and Sea Ice with Synthetic-Aperture Radar; California Institute of Technology, Jet Propulsion Laboratory: Pasadena, CA, USA, 1982. [Google Scholar]
- Melsheimer, C.; Alpers, W.; Gade, M. Simultaneous observations of rain cells over the ocean by the synthetic aperture radaraboard the ERS satellites and by surface-based weather radars. J. Geophys. Res. Oceans 2001, 106, 4665–4677. [Google Scholar] [CrossRef]
- Atlas, D. Origin of storm footprints on the sea seen by synthetic aperture radar. Science 1994, 266, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Atlas, D. Footprints of storms on the sea: A view from spaceborne synthetic aperture radar. J. Geophys. Res. Oceans 1994, 99, 7961–7969. [Google Scholar] [CrossRef]
- Melshelmer, C.; Alpers, W.; Gade, M. Investigation of multifrequency/multipolarization radar signatures of rain cells over the ocean using SIR-C/X-SAR data. In Proceedings of the IGARSS ′96. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 31 May 1996. [Google Scholar]
- Jameson, A.R.; Li, F.K.; Durden, S.L.; Haddad, Z.S.; Holt, B.; Fogarty, T.; Im, E.; Moore, R.K. SIR-C/X-SAR observations of rain storms. Remote Sens. Environ. 1997, 59, 267–279. [Google Scholar] [CrossRef]
- ITU Radiocommunication Bureau. Technical Characteristics of Maritime Radionavigation Radars. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1313-1-200005-W!!PDF-E.pdf (accessed on 10 November 2023).
- Clegg, A.W.; Seguin, S.A.; Marks, R.J.; Baylis, C. Radar Sharing in the U.S. 3 GHz Band. In Proceedings of the 2022 IEEE Radar Conference, New York, NY, USA, 21–25 March 2022. [Google Scholar]
- Dong, F.; Chan, C.W.; Lee, Y.H. Channel modeling in maritime environment for USV. In Proceedings of the Defence Technology Asia, Singapore, 7–8 February 2011. [Google Scholar]
- Honegger, D.A.; Haller, M.C.; Holman, R.A. High-resolution bathymetry estimates via X-band marine radar: 1. beaches. Coast. Eng. 2019, 149, 39–48. [Google Scholar] [CrossRef]
- Janapati, J.; Seela, B.K.; Lin, P.; Wang, P.K.; Tseng, C.; Reddy, K.K.; Hashiguchi, H.; Feng, L.; Das, S.K.; Unnikrishnan, C.K. Raindrop size distribution characteristics of Indian and Pacific Ocean tropical cyclones observed at India and Taiwan sites. J. Meteorol. Soc. Jpn. 2020, 98, 299–317. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Beard, K.V. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Q. J. Roy. Meteor. Soc. 1970, 96, 247–256. [Google Scholar] [CrossRef]
- Pruppacher, H.R.; Pitter, R.L. A Semi-Empirical Determination of the Shape of Cloud and Rain Drops. J. Atmos. Sci. 1971, 28, 86–94. [Google Scholar] [CrossRef]
- Lockwood, D.J. Rayleigh and Mie Scattering. In Encyclopedia of Color Science and Technology; Springer: New York, NY, USA, 2016. [Google Scholar]
- Deirmendjian, D. Electromagnetic Scattering on Spherical Polydispersions; American Elsevier Publishing: New York, NY, USA, 1969. [Google Scholar]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume I-Microwave Remote Sensing Fundamentals and Radiometry; Artech House: Norwood, MA, USA, 1981. [Google Scholar]
- Matzler, C. Thermal Microwave Radiation: Applications for Remote Sensing; The Institution of Engineering and Technology: Stevenage, UK, 2006. [Google Scholar]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Atmos. Sci. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Zhang, G.; Xue, M.; Cao, Q.; Dawson, D. Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development. J. Appl. Meteorol. Clim. 2008, 47, 2983–2992. [Google Scholar] [CrossRef]
- Wolf, D.A. On the Laws-Parsons distribution of raindrop sizes. Radio Sci. 2001, 36, 639–642. [Google Scholar] [CrossRef]
- Cerro, C.; Codina, B.; Bech, J.; Lorente, J. Modeling Raindrop Size Distribution and Z(R) Relations in the Western Mediterranean Area. J. Appl. Meteorol. Clim. 1997, 36, 1470–1479. [Google Scholar] [CrossRef]
- Amarasinghe, Y.; Zhang, W.; Zhang, R.; Mittleman, D.M.; Ma, J. Scattering of Terahertz Waves by Snow. J. Infrared Millim. Terahertz Waves 2020, 41, 215–224. [Google Scholar] [CrossRef]
- Wang, R.; Mei, Y.; Meng, X.; Ma, J. Secrecy performance of terahertz wireless links in rain and snow. Nano Commun. Netw. 2021, 28, 100350. [Google Scholar] [CrossRef]
- Liebe, H.J.; Hufford, G.A.; Cotton, M.G. Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In Proceedings of the AGARD 52nd Specialists’ Meeting of the Electromagnetic Wave Propagation Panel, Palma de Mallorca, Spain, 17–20 May 1993. [Google Scholar]
- Recommendation ITU-R P.676-11: Attenuation by Atmospheric Gases. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-I!!PDF-E.pdf (accessed on 10 November 2023).
- International Telecommunication Union Recommendation (ITU-R) P.676-13: Attenuation by Atmospheric Gases and Related Effects. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-13-202208-I!!PDF-E.pdf (accessed on 10 November 2023).
- Federici, J.F.; Ma, J.; Moeller, L. Review of weather impact on outdoor terahertz wireless communication links. Nano Commun. Netw. 2016, 10, 13–26. [Google Scholar] [CrossRef]
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House: Norwood, MA, USA, 1994. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Actice and Passive. Volume II-Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Norwood, MA, USA, 1982. [Google Scholar]
- He, J.; Yu, T.; Geng, N.; Carin, L. Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium. Radio Sci. 2000, 35, 305–313. [Google Scholar] [CrossRef]
- Bourgeois, J.M.; Smith, G.S. A Fully Three-Dimensional Simulation of a Ground-Penetrating Radar: FDT with Experiment Theory Compared. IEEE Trans. Geosci. Remote 1996, 34, 36–44. [Google Scholar] [CrossRef]
- Harrington, R.F. Field Computation by Moment Methods; Wiley-IEEE Press: Hoboken, NJ, USA, 1993. [Google Scholar]
- Degli-Esposti, V.; Guiducci, D.; De’Marsi, A.; Azzi, P.; Fuschini, F. An advanced field prediction model including diffuse scattering. IEEE Trans. Antenn. Propag. 2004, 52, 1717–1728. [Google Scholar] [CrossRef]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Artech House: Norwood, MA, USA, 1987. [Google Scholar]
- Harvey, J.E.; Krywonos, A.; Vernold, C.L. Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles. Opt. Eng. 2007, 46, 78002–780010. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Fung, A.K.; Liu, W.Y.; Chen, K.S.; Tsay, M.K. An Improved Iem Model for Bistatic Scattering from Rough Surfaces. J. Electromagn. Waves Appl. 2002, 16, 689–702. [Google Scholar] [CrossRef]
- Alvarez-Perez, J.L. An extension of the IEM/IEMM surface scattering model. Waves Random Media 2001, 11, 307–329. [Google Scholar] [CrossRef]
- Alvarez-Perez, J.L.; Vall-Ilossera, M.; Nieto-Borge, J.C. Emissivity Calculations for two-dimensional ocean Surfaces with the improved Integral Equation Model IEM2M. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Wei, J.C.; Chen, H.; Qin, X.; Cui, T.J. Surface and Volumetric Scattering by Rough Dielectric Boundary at Terahertz Frequencies. IEEE Trans. Antenn. Propag. 2017, 65, 3154–3161. [Google Scholar] [CrossRef]
- Voronovich, A.G.; Zavorotny, V.U. Theoretical model for scattering of radar signals in Ku-and C-bands from a rough sea surface with breaking waves. Waves Random Media 2001, 11, 247–269. [Google Scholar] [CrossRef]
- Chu, X.; He, Y.; Chen, G. Asymmetry and Anisotropy of Microwave Backscatter at Low Incidence Angles. IEEE Trans. Geosci. Remote 2012, 50, 4014–4024. [Google Scholar] [CrossRef]
- Li, L.; Heymsfield, G.M.; Tian, L.; Racette, P.E. Measurements of Ocean Surface Backscattering Using an Airborne 94-GHz Cloud Radar—Implication for Calibration of Airborne and Spaceborne W-Band Radars. J. Atmos. Ocean. Technol. 2005, 22, 1033–1045. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Zhao, L.; Ma, J.; Sun, H.; Moeller, L.; Federici, J.F. Performance degradation of terahertz channels in emulated rain. Nano Commun. Netw. 2023, 35, 100431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wei, M.; Wang, Y.; Sun, H.; Ma, J. Radar Signal Behavior in Maritime Environments: Falling Rain Effects. Electronics 2024, 13, 58. https://doi.org/10.3390/electronics13010058
Wang X, Wei M, Wang Y, Sun H, Ma J. Radar Signal Behavior in Maritime Environments: Falling Rain Effects. Electronics. 2024; 13(1):58. https://doi.org/10.3390/electronics13010058
Chicago/Turabian StyleWang, Xun, Menghan Wei, Ying Wang, Houjun Sun, and Jianjun Ma. 2024. "Radar Signal Behavior in Maritime Environments: Falling Rain Effects" Electronics 13, no. 1: 58. https://doi.org/10.3390/electronics13010058
APA StyleWang, X., Wei, M., Wang, Y., Sun, H., & Ma, J. (2024). Radar Signal Behavior in Maritime Environments: Falling Rain Effects. Electronics, 13(1), 58. https://doi.org/10.3390/electronics13010058