Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting
Abstract
:1. Introduction
- (1)
- The analytic expressions of downlink/uplink ergodic data rates for the FD/HD nodes with SWIPT are derived;
- (2)
- The impact of power split parameter on energy harvesting is analyzed;
- (3)
- The impact of self-interference cancellation capability with residual self-interference (RSI) coefficient λ on the FD node is studied.
2. Related Work
3. System Model of Energy Harvesting
3.1. Channel Model
3.2. FD Transmission
3.3. HD Transmission
4. Downlink Ergodic Rate
4.1. Downlink Ergodic Rate for FD Transmission
4.2. Downlink Ergodic Rate for HD Transmission
5. Uplink Ergodic Rate
5.1. Uplink Ergodic Rate for FD Transmission
5.2. Uplink Ergodic Rate for HD Transmission
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Liu, C.; Chang, K. Full-Duplex Heterogeneous Networks: Ergodic Rate Analysis with Realistic Interference Modeling. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar]
- Zhang, Z.; Long, K.; Vasilakos, A.V.; Hanzo, L. Full-Duplex Wireless Communications: Challenges, Solutions and Future Research Directions. Proc. IEEE 2016, 104, 1369–1409. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, R.; Cheng, X.; Yang, L. Capacity-Enhancing Full Duplex Relay Networks Based on Power-Splitting (PS-)SWIPT. IEEE Trans. Veh. Technol. 2017, 66, 5445–5450. [Google Scholar] [CrossRef]
- Zeng, Q.; Zheng, Y.; Zhong, B.; Zhang, Z. Minimum Transmission Protocol for Full-Duplex Systems with Energy Harvesting. IEEE Commun. Lett. 2019, 23, 382–385. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Z.; Elkashlan, M.; Poor, H.V. Cooperative Non-Orthogonal Multiple Access with Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2016, 34, 938–953. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, Y.; Yang, Z.; Xu, P.; Ding, Z. Energy Efficiency Optimization in Full-Duplex User-Aided Cooperative SWIPT NOMA Systems. IEEE Trans. Commun. 2019, 67, 5753–5767. [Google Scholar] [CrossRef]
- Li, G.; Mishra, D.; Hu, Y.; Atapattu, S. Optimal Designs for Relay-Assisted NOMA Networks with Hybrid SWIPT Scheme. IEEE Trans. Commun. 2020, 68, 3588–3601. [Google Scholar] [CrossRef]
- Zaidi, S.K.; Hasan, S.F.; Gui, X. Evaluating the Ergodic Rate in SWIPT-Aided Hybrid NOMA. IEEE Commun. Lett. 2018, 22, 1870–1873. [Google Scholar] [CrossRef]
- Ding, Z.; Perlaza, S.M.; Esnaola, I.; Poor, H.V. Power Allocation Strategies in Energy Harvesting Wireless Cooperative Networks. IEEE Trans. Wirel. Commun. 2014, 13, 846–860. [Google Scholar] [CrossRef]
- Hakimi, A.; Mohammadi, M.; Mobini, Z.; Ding, Z. Full-Duplex Non-Orthogonal Multiple Access Cooperative Spectrum-Sharing Networks with Non-Linear Energy Harvesting. IEEE Trans. Veh. Technol. 2020, 69, 10925–10936. [Google Scholar] [CrossRef]
- Liu, C.P.; Zhang, L.; Chen, Z.; Li, S. Power-Time Resource Allocation for Downlink SWIPT-Assisted Cooperative NOMA Systems. Sci. China Inf. Sci. 2023, 66, 152303. [Google Scholar] [CrossRef]
- Wang, W.; Tang, J.; Zhao, N.; Liu, X.; Zhang, X.Y.; Chen, Y.; Qian, Y. Joint Precoding Optimization for Secure SWIPT in UAV-Aided NOMA Networks. IEEE Trans. Commun. 2020, 68, 5028–5040. [Google Scholar] [CrossRef]
- Bijak, J.; Sciuto, G.L.; Kowalik, Z.; Lasek, P.; Szczygieł, M.; Trawiński, T. Magnetic Flux Density Analysis of Magnetic Spring in Energy Harvester by Hall-Effect Sensors and 2D Magnetostatic FE Model. J. Magn. Magn. Mater. 2023, 579, 170796. [Google Scholar] [CrossRef]
- Sciuto, G.L.; Bijak, J.; Kowalik, Z.; Szczygieł, M.; Trawiński, T. Displacement and Magnetic Induction Measurements of Energy Harvester System Based on Magnetic Spring Integrated in the Electromagnetic Vibration Generator. J. Vib. Eng. Technol. 2024, 12, 3305–3320. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press: New York, NY, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, B.; Chen, L.; Zhang, Z. Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting. Electronics 2024, 13, 2195. https://doi.org/10.3390/electronics13112195
Zhong B, Chen L, Zhang Z. Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting. Electronics. 2024; 13(11):2195. https://doi.org/10.3390/electronics13112195
Chicago/Turabian StyleZhong, Bin, Liang Chen, and Zhongshan Zhang. 2024. "Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting" Electronics 13, no. 11: 2195. https://doi.org/10.3390/electronics13112195
APA StyleZhong, B., Chen, L., & Zhang, Z. (2024). Ergodic Rate Analysis for Full-Duplex and Half-Duplex Networks with Energy Harvesting. Electronics, 13(11), 2195. https://doi.org/10.3390/electronics13112195