A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs
Abstract
:1. Introduction
2. Simulation Methods
2.1. MD Simulation
2.2. Defect Statistics
2.3. DFT Calculation
2.4. CI–NEB Calculation
2.5. MLWF Transformation
2.6. Quantum Transport Simulation
3. Results and Discussions
3.1. Molecular Dynamics Simulations
3.2. DFT Calculation
3.3. NEB Calculation
3.4. Impact of Defects on Carrier Transport of 4H-SiC MOSFET Channel
3.4.1. Couplings between AlSi and Other Defects
3.4.2. Couplings between AlC and Other Defects
3.4.3. Couplings between Ali and Other Defects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kimoto, T.; Watanabe, H. Defect engineering in sic technology for high-voltage power devices. Appl. Phys. Express 2020, 13, 120101. [Google Scholar] [CrossRef]
- Deng, H.; Wei, S.; Li, S. Review of defect physics and doping control in wide-band-gap semiconductors. Chin. Sci. Bull. 2023, 68, 1753–1761. [Google Scholar] [CrossRef]
- Puschkarsky, K.; Grasser, T.; Aichinger, T.; Gustin, W.; Reisinger, H. Review on sic mosfets high-voltage device reliability focusing on threshold voltage instability. IEEE Trans. Electron Devices 2019, 66, 4604–4616. [Google Scholar] [CrossRef]
- Han, L.; Liang, L.; Kang, Y.; Qiu, Y. A review of sic igbt: Models, fabrications, characteristics, and applications. IEEE Trans. Power Electron. 2021, 36, 2080–2093. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucia, O.; Ozpineci, B. Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, L.; Sun, C.; Zhang, Y.; Tang, X.; Zhang, Y. Three-dimensional design of a 4h-sic npn lateral phototransistor for micro-pixel in ultraviolet optoelectronic integration. IEEE Trans. Electron Devices 2023, 70, 6399–6405. [Google Scholar] [CrossRef]
- Yang, W.; Sun, Y.; Qi, M.; Tang, Z.; Mao, S.; Yuan, L.; Sun, L.; Zhang, Y.; Zhang, Y. Wide temperature range modeling of implanted resistors based on 4h-sic cmos process. IEEE Trans. Electron Devices 2024, 71, 3575–3581. [Google Scholar] [CrossRef]
- Fan, Y.; Song, Y.; Xu, Z.; Dong, B.; Wu, J.; Rommel, M.; Zhang, K.; Zhao, J.; Zhu, R.; Li, B.; et al. Molecular dynamics simulation of color centers in silicon carbide by helium and dual ion implantation and subsequent annealing. Ceram. Int. 2021, 47, 24534–24544. [Google Scholar] [CrossRef]
- Wachowicz, E.; Ossowski, T.; Kiejna, A. Dft study of stepped 4h-sic{0001} surfaces. Appl. Surf. Sci. 2017, 420, 129–135. [Google Scholar] [CrossRef]
- Wellmann, P.J. Review of sic crystal growth technology. Semicond. Sci. Technol. 2018, 33, 103001. [Google Scholar] [CrossRef]
- Tsuchida, H.; Kamata, I.; Miyazawa, T.; Ito, M.; Zhang, X.; Nagano, M. Recent advances in 4h-sic epitaxy for high-voltage power devices. Mater. Sci. Semicond. Process. 2018, 78, 2–12. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, Y.; Zhang, Y.; Yang, D.; Pi, X. Kick-out diffusion of al in 4h-sic: An ab initio study. J. Appl. Phys. 2022, 132, 015701. [Google Scholar] [CrossRef]
- Nipoti, R.; Carnera, A.; Alfieri, G.; Kranz, L. About the electrical activation of 1×1020 cm-3 ion implanted al in 4h-sic at annealing temperatures in the range 1500–1950 °C. Mater. Sci. Forum 2018, 924, 333–338. [Google Scholar] [CrossRef]
- Poggi, A.; Bergamini, F.; Nipoti, R.; Solmi, S.; Canino, M.; Carnera, A. Effects of heating ramp rates on the characteristics of al implanted 4h–sic junctions. Appl. Phys. Lett. 2006, 88, 162106. [Google Scholar] [CrossRef]
- Nipoti, R.; Ayedh, H.M.; Svensson, B.G. Defects related to electrical doping of 4h-sic by ion implantation. Mater. Sci. Semicond. Process. 2018, 78, 13–21. [Google Scholar] [CrossRef]
- Hornos, T.; Gali, A.; Son, N.T.; Janzén, E. A theoretical study on aluminium-related defects in sic. Mater. Sci. Forum 2007, 556–557, 445–448. [Google Scholar] [CrossRef]
- Wu, J.; Xu, Z.; Liu, L.; Hartmaier, A.; Rommel, M.; Nordlund, K.; Wang, T.; Janisch, R.; Zhao, J. Md simulation study on defect evolution and doping efficiency of p-type doping of 3c-sic by al ion implantation with subsequent annealing. J. Mater. Chem. C 2021, 9, 2258–2275. [Google Scholar] [CrossRef]
- Asada, S.; Murata, K.; Tsuchida, H. Modeling of stacking faults in 4h-sic n-type epilayer for tcad simulation. IEEE Trans. Electron Devices 2023, 70, 1757–1762. [Google Scholar] [CrossRef]
- Bernstein, N.; Gotsis, H.J.; Papaconstantopoulos, D.A.; Mehl, M.J. Tight-binding calculations of the band structure and total energies of the various polytypes of silicon carbide. Phys. Rev. B 2005, 71, 075203. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Berendsen, H.J.; Postma, J.v.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Ziegler, J.F. Srim-2003. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 2004, 219–220, 1027–1036. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef]
- Biersack, J.P.; Ziegler, J.F. The stopping and range of ions in solids. Ion Implant. Sci. Technol. 1984, 1, 51–108. [Google Scholar]
- Jacobsen, K.W.; Norskov, J.K.; Puska, M.J. Interatomic interactions in the effective-medium theory. Phys. Rev. B 1987, 35, 7423–7442. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, C.R.; Shin, Y.C. Molecular dynamics based cohesive zone law for describing al–sic interface mechanics. Compos. Part A Appl. Sci. Manuf. 2011, 42, 355–363. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, N.; Long, Y. Interfacial potentials for al/sic(111). J. Phys. Condens. Matter 2009, 21, 225002. [Google Scholar] [CrossRef] [PubMed]
- Maras, E.; Trushin, O.; Stukowski, A.; Ala-Nissila, T.; Jónsson, H. Global transition path search for dislocation formation in ge on si(001). Comput. Phys. Commun. 2016, 205, 13–21. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef]
- Lv, Y.; Tong, Q.; Liu, Y.; Li, L.; Chang, S.; Zhu, W.; Jiang, C.; Liao, L. Band-offset degradation in van der waals heterojunctions. Phys. Rev. Appl. 2019, 12, 044064. [Google Scholar] [CrossRef]
- Yan, X.; Li, P.; Kang, L.; Wei, S.-H.; Huang, B. First-principles study of electronic and diffusion properties of intrinsic defects in 4h-sic. J. Appl. Phys. 2020, 127, 085702. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef]
- Pizzi, G.; Vitale, V.; Arita, R.; Blügel, S.; Freimuth, F.; Géranton, G.; Gibertini, M.; Gresch, D.; Johnson, C.; Koretsune, T.; et al. Wannier90 as a community code: New features and applications. J. Phys. Condens. Matter. 2020, 32, 165902. [Google Scholar] [CrossRef] [PubMed]
- Datta, S. Nanoscale device modeling: The green’s function method. Superlattices Microstruct. 2000, 28, 253–278. [Google Scholar] [CrossRef]
- Marian, D.; Marin, E.G.; Perucchini, M.; Iannaccone, G.; Fiori, G. Multi-scale simulations of two dimensional material based devices: The nanotcad vides suite. J. Comput. Electron. 2023, 22, 1327–1337. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, R.; Zhang, Y.; Yang, D.; Pi, X. Compensation of p-type doping in al-doped 4h-sic. J. Appl. Phys. 2022, 131, 185703. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lan, H.; Shangguan, Q.; Lv, Y.; Jiang, C. A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs. Electronics 2024, 13, 2758. https://doi.org/10.3390/electronics13142758
Wang Y, Lan H, Shangguan Q, Lv Y, Jiang C. A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs. Electronics. 2024; 13(14):2758. https://doi.org/10.3390/electronics13142758
Chicago/Turabian StyleWang, Yawen, Haipeng Lan, Qiwei Shangguan, Yawei Lv, and Changzhong Jiang. 2024. "A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs" Electronics 13, no. 14: 2758. https://doi.org/10.3390/electronics13142758
APA StyleWang, Y., Lan, H., Shangguan, Q., Lv, Y., & Jiang, C. (2024). A Multiscale Simulation on Aluminum Ion Implantation-Induced Defects in 4H-SiC MOSFETs. Electronics, 13(14), 2758. https://doi.org/10.3390/electronics13142758