Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach
Abstract
:1. Introduction
1.1. Related Work
1.2. Remainder of Paper
2. Materials and Methods
2.1. About the Images Used
2.2. Detection Method
2.3. Water Detection
2.3.1. Calculation of Normalized Indexes
2.3.2. Detection Using Neural Networks
- 10 inputs, i.e., the size of the characteristic vector.
- 5 outputs, 1 for each class identified.
- 10 hidden neurons. This decision is the result of fine-tuning of the system.
- The activation functions are a hyperbolic tangent in the hidden layer and softmax in the output layer.
- Closing, erasing isolated non-water points.
- Opening, erasing isolated water points.
- Erosion, used to eliminate points very close to the coastline.
2.4. Detection of Platforms
2.4.1. Neural Networks
2.4.2. Support Vector Machines
2.4.3. Bagged Tree
2.5. Post-Processing of Results
3. Results
4. Discussion
5. Conclusions
- -
- Process automation, implementing the model in an environment more suitable for an end-user application (C++ or Python), performing the automatic download and cropping of the images.
- -
- Obtaining an output compatible with GIS tools, as nowadays the proposed application only obtains raft coordinates on the Sentinel images.
- -
- Further study on the failure for SVM and Bagged Tree and research on other machine-learning techniques.
- -
- Study of the reasons for the poor results with BOA correction.
- -
- Explore the use of high-resolution SAR data (5 m × 5 m) from Sentinel 1.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Bands of Sentinel 2
References
- Available online: https://www.copernicus.eu/en/about-copernicus/infrastructure/discover-our-satellites (accessed on 1 January 2024).
- Available online: https://scihub.copernicus.eu/ (accessed on 1 January 2024).
- Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial (accessed on 1 January 2024).
- Illarionova, S.; Shadrin, D.; Ignatiev, V.; Shayakhmetov, S.; Trekin, A.; Oseledets, I. Estimation of the Canopy Height Model from Multispectral Satellite Imagery with Convolutional Neural Networks. IEEE Access 2022, 10, 34116–34132. [Google Scholar] [CrossRef]
- Moghimi, A.; Welzel, M.; Celik, T.; Schlurmann, T. A Comparative Performance Analysis of Popular Deep Learning Models and Segment Anything Model (SAM) for River Water Segmentation in Close-Range Remote Sensing Imagery. IEEE Access 2024, 12, 52067–52085. [Google Scholar] [CrossRef]
- Tahir, A.; Munawar, H.S.; Akram, J.; Adil, M.; Ali, S.; Kouzani, A.Z.; Mahmud, M.A.P. Automatic Target Detection from Satellite Imagery Using Machine Learning. Sensors 2022, 22, 1147. [Google Scholar] [CrossRef] [PubMed]
- Marino, A.; Nunziata, F.; Vilas, L.G. Detecting aquaculture platforms using COSMO SkyMed. In Proceedings of the 13th European Conference on Synthetic Aperture Radar, EUSAR 2021, Online, 29 March–1 April 2021; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/9472734 (accessed on 10 July 2024).
- Murata, H.; Komatsu, T.; Yonezawa, C. Detection and discrimination of aquacultural facilities in Matsushima Bay, Japan, for integrated coastal zone management and marine spatial planning using full polarimetric L-band airborne synthetic aperture radar. Int. J. Remote Sens. 2019, 40, 5141–5157. [Google Scholar] [CrossRef]
- Travaglia, C.; Profeti, G.; Aguilar-Manjarrez, J.; Lopez, N.; Marçal, A. Mapping Coastal Aquaculture and Fisheries Structures by Satellite Imaging Radar. Case Study of the lingayen Gulf, the Philippines; FAO Fisheries Technical Paper; FAO: Rome, Italy, 2004; ISBN 9251051143; Available online: https://www.fao.org/fishery/docs/DOCUMENT/gisfish/studycase11travagliaetal/studycase11travagliaetal_00.pdf (accessed on 10 July 2024).
- Fan, J.; Chu, J.; Geng, J.; Zhang, F. Floating raft aquaculture information automatic extraction based on high resolution SAR images. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 3898–3901. [Google Scholar] [CrossRef]
- Kurekin, A.A.; Miller, P.I.; Avillanosa, A.L.; Sumeldan, J.D.C. Monitoring of Coastal Aquaculture Sites in the Philippines through Automated Time Series Analysis of Sentinel-1 SAR Images. Remote Sens. 2022, 14, 2862. [Google Scholar] [CrossRef]
- Available online: https://developers.arcgis.com/python/samples/detecting-mussel-farms-using-deep-learning/ (accessed on 10 July 2024).
- McMillan, C. Improving Buoy Detection with Deep Transfer Learning for Mussel Farm Automation. arXiv 2023, arXiv:2308.09238v2. [Google Scholar] [CrossRef]
- Zeng, D.; Liu, I.; Bi, Y.; Vennell, R.; Briscoe, D.; Xue, B.; Zhang, M. A new multi-object tracking pipeline based on computer vision techniques for mussel farms. J. R. Soc. N. Z. 2023, 1–20. [Google Scholar] [CrossRef]
- Available online: https://inta.es/INTA/es/blogs/copernicus/BlogEntry_1509095468013# (accessed on 1 January 2024).
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Martín-Rodríguez, F.; Mojón-Ojea, O. Big Plastic Masses Detection Using Satellite Images & Machine Learning; Instrumentation Viewpoint; Upcommons (Universitat Politècnica de Catalunya): Barcelona, Spain, 2021; pp. 30–31. [Google Scholar]
- Getreuer, P. Linear Methods for Image Interpolation. Image Process. Line 2011, 1, 238–259. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Johansson, E.; Dowla, F.; Goodman, D. Backpropagation Learning for Multilayer Feed-Forward Neural Networks Using the Conjugate Gradient Method. Int. J. Neural Syst. 1991, 02, 291–301. [Google Scholar] [CrossRef]
- MATLAB. Available online: https://es.mathworks.com/products/matlab.html (accessed on 28 February 2023).
- González, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Gatesmark Publishing, Cop.: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Lausen, B. Bagging tree classifiers for laser scanning images: A data- and simulation-based strategy. Artif. Intell. Med. 2002, 27, 65–79. [Google Scholar] [CrossRef] [PubMed]
Classifier | F1-Score | Error Rate (%) |
---|---|---|
MLP | 0.98 | 2.5% |
SVM | 0.99 | 1.0% |
Bagged Tree | 0.99 | <1.0% |
Classifier | Precision | Recall | F1-Score |
---|---|---|---|
MLP | 0.9146 | 0.9918 | 0.9516 |
SVM | 0.7003 | 0.2783 | 0.3983 |
Bagged Tree | 0.7530 | 0.2631 | 0.3900 |
Classifier | Precision | Recall | F1-Score |
---|---|---|---|
MLP | 0.9103 | 0.9912 | 0.9490 |
SVM | 0.7278 | 0.2775 | 0.4018 |
Bagged Tree | 0.7587 | 0.2631 | 0.3907 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Rodríguez, F.; Álvarez-Sabucedo, L.M.; Santos-Gago, J.M.; Fernández-Barciela, M. Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach. Electronics 2024, 13, 2782. https://doi.org/10.3390/electronics13142782
Martín-Rodríguez F, Álvarez-Sabucedo LM, Santos-Gago JM, Fernández-Barciela M. Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach. Electronics. 2024; 13(14):2782. https://doi.org/10.3390/electronics13142782
Chicago/Turabian StyleMartín-Rodríguez, Fernando, Luis M. Álvarez-Sabucedo, Juan M. Santos-Gago, and Mónica Fernández-Barciela. 2024. "Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach" Electronics 13, no. 14: 2782. https://doi.org/10.3390/electronics13142782
APA StyleMartín-Rodríguez, F., Álvarez-Sabucedo, L. M., Santos-Gago, J. M., & Fernández-Barciela, M. (2024). Enhanced Satellite Analytics for Mussel Platform Census Using a Machine-Learning Based Approach. Electronics, 13(14), 2782. https://doi.org/10.3390/electronics13142782