High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection of Droplet Impedance
2.2. Equivalent Circuit Model
2.3. Design and Fabrication of DMF Chip
2.4. Design of the DMF System
2.5. Measurement of Droplet Impedance
2.6. Circuit Simulation
3. Results and Discussion
3.1. Validation of the Impedance Model
3.2. Droplet Positioning
3.3. Detection of Droplet Volume
3.4. Detection of Droplet Composition
3.5. Detection of Salt Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Geng, H.; Feng, J.; Stabryla, L.M.; Cho, S.K. Dielectrowetting manipulation for digital microfluidics: Creating, transporting, splitting, and merging of droplets. Lab Chip 2017, 17, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Kim, C.C. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip 2020, 20, 1705–1712. [Google Scholar] [CrossRef] [PubMed]
- Jebrail, M.J.; Bartsch, M.S.; Patel, K.D. Digital microfluidics: A versatile tool for applications in chemistry, biology and medicine. Lab Chip 2012, 12, 2452–2463. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Simchi, M.; Perry, J.M.; Frenette, S.; Benali, H.; Soucy, J.P.; Massarweh, G.; Shih, S.C.C. Integrating machine learning and digital microfluidics for screening experimental conditions. Lab Chip 2022, 23, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Jebrail, M.J.; Ng, A.H.; Rai, V.; Hili, R.; Yudin, A.K.; Wheeler, A.R. Synchronized synthesis of peptide-based macrocycles by digital microfluidics. Angew. Chem. Int. Ed. Engl. 2010, 49, 8625–8629. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ruan, Q.; Lei, Z.C.; Lin, S.C.; Zhu, Z.; Zhou, L.; Yang, C. Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics. Anal. Chem. 2018, 90, 5224–5231. [Google Scholar] [CrossRef] [PubMed]
- Shamsi, M.H.; Choi, K.; Ng, A.H.; Wheeler, A.R. A digital microfluidic electrochemical immunoassay. Lab Chip 2014, 14, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cai, L.; Liang, S.; Zhang, Q.; Lin, S.; Li, M.; Yang, Q.; Li, C.; Han, Z.; Yang, C. Digital microfluidics for biological analysis and applications. Lab Chip 2023, 23, 1169–1191. [Google Scholar] [CrossRef] [PubMed]
- Eydelnant, I.A.; Uddayasankar, U.; Li, B.; Liao, M.W.; Wheeler, A.R. Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 2012, 12, 750–757. [Google Scholar] [CrossRef]
- Shih, S.C.; Barbulovic-Nad, I.; Yang, X.; Fobel, R.; Wheeler, A.R. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectron. 2013, 42, 314–320. [Google Scholar] [CrossRef]
- Tong, Z.; Shen, C.; Li, Q.; Yin, H.; Mao, H. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): Advanced digital microfluidic systems for biomedical applications. Analyst 2023, 148, 1399–1421. [Google Scholar] [CrossRef] [PubMed]
- Narahari, T.; Dahmer, J.; Sklavounos, A.; Kim, T.; Satkauskas, M.; Clotea, I.; Ho, M.; Lamanna, J.; Dixon, C.; Rackus, D.G.; et al. Portable sample processing for molecular assays: Application to Zika virus diagnostics. Lab Chip 2022, 22, 1748–1763. [Google Scholar] [CrossRef] [PubMed]
- Coelho, B.J.; Veigas, B.; Bettencourt, L.; Águas, H.; Fortunato, E.; Martins, R.; Baptista, P.V.; Igreja, R. Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker. Biosensors 2022, 12, 201. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Zou, F.; Wang, Y.; Zhang, Y.; Xu, X.; Lin, X.; Tian, T.; Zhang, H.; Zhou, L.; Zhu, Z.; et al. Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. ACS Appl. Mater. Interfaces 2021, 13, 8042–8048. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.L.; Liao, H.Y.; Liu, H.M.; Lu, Y.W.; Yeh, P.K.; Chang, J.Y.; Fan, S.K. Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. Micromachines 2022, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Alias, A.B.; Chiang, C.E.; Huang, H.Y.; Lin, K.T.; Lu, P.J.; Wang, Y.W.; Wu, T.H.; Jiang, P.S.; Chen, C.A.; Yao, D.J. Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod. Sci. Rep. 2020, 10, 9708. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayanan, G.; Haapala, M.; Sikanen, T. Digital Microfluidics-Enabled Analysis of Individual Variation in Liver Cytochrome P450 Activity. Anal. Chem. 2020, 92, 14693–14701. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, L.M.Y.; Soffer, G.; Kwan, D.H.; Shih, S.C.C. A fucosyltransferase inhibition assay using image-analysis and digital microfluidics. Biomicrofluidics 2019, 13, 034106. [Google Scholar] [CrossRef]
- Peng, J.; Chan, C.; Zhang, S.; Sklavounos, A.A.; Olson, M.E.; Scott, E.Y.; Hu, Y.; Rajesh, V.; Li, B.B.; Chamberlain, M.D.; et al. All-in-One digital microfluidics pipeline for proteomic sample preparation and analysis. Chem. Sci. 2023, 14, 2887–2900. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lin, L.; Zhao, K.; Song, Y.; Huang, M.; Zhu, Z.; Zhou, L.; Yang, C. Auto-affitech: An automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. Lab Chip 2020, 20, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y. Advances in integrated digital microfluidic platforms for point-of-care diagnosis: A review. Sens. Diagn. 2022, 1, 648–672. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Chai, Y.; Shan, J.; Xie, Y.; Liang, Y.; Huang, S.; Zheng, W.; Li, Z. Point-of-care blood coagulation assay enabled by printed circuit board-based digital microfluidics. Lab Chip 2022, 22, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Li, H.; Wong, A.H.; Dong, C.; Yi, S.; Jia, Y.; Mak, P.I.; Deng, C.X.; Martins, R.P. A digital microfluidic system with 3D microstructures for single-cell culture. Microsyst. Nanoeng. 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Li, C.; Li, H.; Yi, S.; Yang, N.; Miao, K.; Deng, C.; Jia, Y.; Mak, P.I.; Martins, R.P. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. Lab Chip 2021, 21, 4749–4759. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.; Norton, S.; Singh, R.; Sista, R.; Srinivasan, V.; Pamula, V. Digital microfluidics comes of age: High-throughput screening to bedside diagnostic testing for genetic disorders in newborns. Expert Rev. Mol. Diagn. 2018, 18, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, R.; Parkin, I.P.; Volpe, G. Advances towards programmable droplet transport on solid surfaces and its applications. Chem. Soc. Rev. 2020, 49, 7879–7892. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Lu, Y.; Xie, S.; Luo, Z.; Shen, S.; Yan, Z.; Jin, M.; Zhou, G.; Shui, L. Intelligent droplet manipulation in electrowetting devices via capacitance-based sensing and actuation for self-adaptive digital microfluidics. Microfluid. Nanofluid. 2020, 24, 59. [Google Scholar] [CrossRef]
- Li, C.; Zhang, K.; Wang, X.; Zhang, J.; Liu, H.; Zhou, J. Feedback control system for large scale 2D digital microfluidic platforms. Sens. Actuators B Chem. 2018, 255, 3616–3622. [Google Scholar] [CrossRef]
- Zhang, C.; Su, Y.; Hu, S.; Jin, K.; Jie, Y.; Li, W.; Nathan, A.; Ma, H. An Impedance Sensing Platform for Monitoring Heterogeneous Connectivity and Diagnostics in Lab-on-a-Chip Systems. ACS Omega 2020, 5, 5098–5104. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Bao, C.; Kim, W.S. Additively Manufactured Digital Microfluidic Platforms for Ion-Selective Sensing. ACS Sens. 2019, 4, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Fobel, R.; Fobel, C.; Wheeler, A.R. DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl. Phys. Lett. 2013, 102, 193513. [Google Scholar] [CrossRef]
- Rui, X.; Song, S.; Wang, W.; Zhou, J. Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR. Biomicrofluidics 2020, 14, 061503. [Google Scholar] [CrossRef] [PubMed]
- Jebrail, M.J.; Renzi, R.F.; Sinha, A.; Van De Vreugde, J.; Gondhalekar, C.; Ambriz, C.; Meagher, R.J.; Branda, S.S. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices. Lab Chip 2015, 15, 151–158. [Google Scholar] [CrossRef]
- Perry, J.M.; Soffer, G.; Jain, R.; Shih, S.C.C. Expanding the limits towards ‘one-pot’ DNA assembly and transformation on a rapid-prototype microfluidic device. Lab Chip 2021, 21, 3730–3741. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Tu, J.; Li, B.; Fu, J.; Zhu, M.; Chen, X.; Zhou, C. Stripped Electrode Based Electrowetting-on-Dielectric Digital Microfluidics for Precise and Controllable Parallel Microdrop Generation. Langmuir 2020, 36, 9540–9550. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, S.; Ding, H.; Shah, G.J.; Chen, S.; Keng, P.Y.; Kim, C.J.; van Dam, R.M. On chip droplet characterization: A practical, high-sensitivity measurement of droplet impedance in digital microfluidics. Anal. Chem. 2012, 84, 1915–1923. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Huang, Q.; Hu, C.; Hu, S.; Li, J. A digital microfluidic system with integrated electrochemical impedance measurement arrays. J. Phys. Conf. Ser. 2022, 2196, 012005. [Google Scholar] [CrossRef]
- Roques-Carmes, T.; Hayes, R.A.; Feenstra, B.J.; Schlangen, L.J.M. Liquid behavior inside a reflective display pixel based on electrowetting. J. Appl. Phys. 2004, 95, 4389–4396. [Google Scholar] [CrossRef]
Material | Resistivity ρ (Ω·m) | Thickness d | |
---|---|---|---|
Air | 1.0 | 2.0 × 1014 | 1.6 mm |
Water | 80.1 | 1.8 × 105 | 1.6 mm |
Top hydrophobic (Cy-top) | 2.0 | 1.0 × 1015 | 0.15 μm * |
Bottom hydrophobic (Teflon) | 2.1 | 1.0 × 1016 | 10 μm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Xu, H.; Song, Z.-R.; Zhou, J.-L.; Jiang, G.-J.; Yan, B.-Y.; Gu, Z.; Wang, H.-F. High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics. Electronics 2024, 13, 2810. https://doi.org/10.3390/electronics13142810
Zeng J, Xu H, Song Z-R, Zhou J-L, Jiang G-J, Yan B-Y, Gu Z, Wang H-F. High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics. Electronics. 2024; 13(14):2810. https://doi.org/10.3390/electronics13142810
Chicago/Turabian StyleZeng, Jin, Hang Xu, Ze-Rui Song, Jia-Le Zhou, Guo-Jun Jiang, Bing-Yong Yan, Zhen Gu, and Hui-Feng Wang. 2024. "High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics" Electronics 13, no. 14: 2810. https://doi.org/10.3390/electronics13142810
APA StyleZeng, J., Xu, H., Song, Z. -R., Zhou, J. -L., Jiang, G. -J., Yan, B. -Y., Gu, Z., & Wang, H. -F. (2024). High Frequency and Addressable Impedance Measurement System for On-Site Droplet Analysis in Digital Microfluidics. Electronics, 13(14), 2810. https://doi.org/10.3390/electronics13142810