Adaptive Sparse Regular Split Gaussian Kernel Least Mean Square Algorithm for Super-Low-Frequency Motion-Induced Noise Cancellation
Abstract
:1. Introduction
2. Proposed Method
2.1. ASRSG–KLMS Algorithm
2.2. ASRSG–KLMS Model Optimization
Algorithm 1 ASRSG–KLMS. |
Select the step size and the parameters of the kernel ; Insert into the dictionary for n = 1,2,…, do if Compute and else if incorporate into the dictionary; Compute and end if Compute using (7) end for |
3. Experiments
3.1. Parameters Setting
3.2. Quantitative Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burrows, M. Motion-Induced Noise in Electrode-Pair Extremely Low Frequency (ELF) Receiving Antennas. IEEE Trans. Commun. 1974, 22, 540–542. [Google Scholar] [CrossRef]
- Maksimenko, V.G. Motion Noise of an Electrode Sensor and Its Relationship with Fluid Velocity Fluctuations. J. Commun. Technol. Electron. 2020, 65, 1167–1172. [Google Scholar] [CrossRef]
- Rivera, D.F. Submarine towed communication antennas: Past, present and future. In Proceedings of the Antennas & Propagation Society International Symposium, Boston, MA, USA, 8–13 July 2001. [Google Scholar]
- Rivera, D.F.; Bansal, R. Towed antennas for US submarine communications: A historical perspective. IEEE Antennas Propag. Mag. 2004, 46, 23–36. [Google Scholar]
- Xie, X.; Wang, Y.; Wu, Q.; Huang, Z. Analysis of underwater motion noise characteristics of electrode pair towed antenna. IEICE Electron. Express 2022, 19, 20220342. [Google Scholar] [CrossRef]
- Xie, X.; Zuo, H.; Wei, S.; Wu, Q. Motion-Induced Noise Detection of Electrode-Pair Towed Antennas Using Helix Coil Sensors. Electronics 2023, 12, 1677. [Google Scholar] [CrossRef]
- Chunteng, L.I.; Yuzhong, J.; Fangjun, L.; Mei, X. Research on motion-induced noise in the design of ultra low frequency antenna. J. Chongqing Univ. Posts Telecommun. (Nat. Sci. Ed.) 2018, 30, 470–475. [Google Scholar]
- Wu, X.; Xue, G.; Xiao, P.; Li, J.; Liu, L.; Fang, G. The removal of the high-frequency motion-induced noise in helicopter-borne transient electromagnetic data based on wavelet neural network. Geophysics 2019, 84, K1–K9. [Google Scholar] [CrossRef]
- Wu, X.; Xue, G.; He, Y.; Xue, J. Removal of multisource noise in airborne electromagnetic data based on deep learning. Geophysics 2020, 85, B207–B222. [Google Scholar]
- Zhu, K.; Peng, C.; Jing, C.; Fan, T.; Yang, Y. Suppression of motion noise based on a linear-homomorphic filtering algorithm in airborne electromagnetic survey. Geophys. Prospect. 2021, 69, 1102–1115. [Google Scholar]
- Maksimenko, V. Compensation of motion-induced noise for an electric-field-strength sensor electrode in seawater. Meas. Tech. 2019, 62, 71–76. [Google Scholar]
- Zang, K.; Jiang, Z.; Liu, H.; Li, L.; Gao, W.; Chen, T. Noise suppression method of ocean wave induced magnetic field based on adaptive LMS algorithm in marine electromagnetic environment monitoring. Fresenius Environ. Bull. 2021, 30, 282–295. [Google Scholar]
- Huang, Z.; Jiang, Y.; Xie, X. Motion-Induced Noise Mechanism Analysis and Reduction Algorithm of ELF Magnetic Receiving Antennas. IEEE Trans. Antennas Propag. 2023, 71, 5637–5652. [Google Scholar] [CrossRef]
- Sayed, A.H. Adaptive Filters; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Siddappaji, K.L.S. A New Time-Varying Convergence Parameter For The LMS Adaptive Filtering Algorithm. Int. J. Eng. Res. Technol. 2013, 2. [Google Scholar]
- Eksioglu, E.M. RLS adaptive filtering with sparsity regularization. In Proceedings of the Information Sciences, Signal Processing and their Applications, Kuala Lumpur, Malaysia, 10–13 May 2010. [Google Scholar]
- Yamada, I.; Ogura, N. Adaptive projected subgradient method and its applications to set theoretic adaptive filtering. In Proceedings of the Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003. [Google Scholar]
- Gao, W.; Chen, J.; Richard, C.; Huang, J. Online Dictionary Learning for Kernel LMS. IEEE Trans. Signal Process. 2014, 62, 2765–2777. [Google Scholar]
- Liu, W.; Príncipe, J.C.; Haykin, S. Kernel Least-Mean-Square Algorithm. In Kernel Adaptive Filtering: A Comprehensive Introduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wang, S.; Feng, J.; Tse, C.K. Kernel Affine Projection Sign Algorithms for Combating Impulse Interference. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 811–815. [Google Scholar] [CrossRef]
- Albu, F.; Nishikawa, K. Nonlinear Adaptive Filtering with a Family of Kernel Affine Projection Algorithms. In Handbook of Research on Advanced Intelligent Control Engineering and Automation; IGI Global: Hershey, PA, USA, 2015. [Google Scholar]
- Engel, Y.; Mannor, S.; Meir, R. The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 2004, 52, 2275–2285. [Google Scholar]
- Chen, B.; Zheng, N.; Principe, J.C. Sparse kernel recursive least squares using L1 regularization and a fixed-point sub-iteration. In Proceedings of the IEEE International Conference on Acoustics, Florence, Italy, 4–9 May 2014. [Google Scholar]
- Liu, W.; Principe, J.C.; Haykin, S. Kernel Adaptive Filtering: A Comprehensive Introduction [Book Review]. IEEE Comput. Intell. Mag. 2010, 5, 52–55. [Google Scholar]
- Honeine, P. Approximation Errors of Online Sparsification Criteria. IEEE Trans. Signal Process. 2014, 63, 4700–4709. [Google Scholar]
- Platt, J. A Resource-Allocating Network for Function Interpolarion. Neural Comput. 1991, 3, 213–225. [Google Scholar]
- Richard, C.; Bermudez, J.C.M.; Honeine, P. Online Prediction of Time Series Data With Kernels. IEEE Trans. Signal Process. 2009, 57, 1058–1067. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, S.; Zhu, P.; Principe, J.C. Quantized Kernel Recursive Least Squares Algorithm. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1484–1491. [Google Scholar]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar]
- Duchi, J.; Singer, Y. Efficient Online and Batch Learning Using Forward Backward Splitting. J. Mach. Learn. Res. 2009, 10, 2899–2934. [Google Scholar]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2006, 4, 1168–1200. [Google Scholar] [CrossRef]
- Constantin, I.; Lengelle, R. Performance Analysis of Kernel Adaptive Filters Based on LMS Algorithm. In Proceedings of the 2013 25th International Conference on Microelectronics (ICM), Beirut, Lebanon, 15–18 December 2013. [Google Scholar]
- Hoegaerts, L.; Suykens, J.A.K.; Vandewalle, J.; Moor, B.D. Subset based least squares subspace regression in RKHS. Neurocomputing 2005, 63, 293–323. [Google Scholar]
- Zhu, D.; Razaz, M.; Lee, R. A generalized adaptive gradient descent algorithm for the deconvolution of noisy blurred images. In Proceedings of the 5th International Conference On Computer Vision, Pattern Recognition and Image Processing, Cary, NC, USA, 26–30 September 2003. [Google Scholar]
- Parreira, W.D.; Bermudez, J.C.M.; Richard, C.; Tourneret, J.Y. Stochastic Behavior Analysis of the Gaussian Kernel Least-Mean-Square Algorithm. IEEE Trans. Signal Process. 2012, 60, 2208–2222. [Google Scholar]
- Narendra, K.S.; Parthasarathy, K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1990, 1, 4–27. [Google Scholar]
Algorithm | Acceleration Sensor/Helix Coil Sensors (SNR (dB)) | |||
---|---|---|---|---|
45–55 (Hz) | 25–75 (Hz) | 0–100 (Hz) | 0–200 (Hz) | |
LMS | 5.58/5.79 | 12.86/12.64 | 7.72/8.24 | 7.76/8.30 |
RLS | 5.52/4.85 | 11.74/13.32 | 12.34/5.91 | 12.27/5.94 |
AP | 5.50/5.50 | 12.90/12.64 | 19.50/15.27 | 19.08/15.16 |
Algorithm | Acceleration Sensor/Helix Coil Sensors (SNR (dB)) | |||
---|---|---|---|---|
45–55 (Hz) | 25–75 (Hz) | 0–100 (Hz) | 0–200 (Hz) | |
KLMS | 5.45/5.48 | 12.75/12.48 | 8.10/2.26 | 8.09/2.32 |
FOBOS-KLMS | 4.27/6.67 | 11.00/13.16 | 12.11/11.83 | 11.89/11.79 |
ASRSG–KLMS | 4.28/6.93 | 11.03/13.50 | 12.19/12.89 | 11.97/12.84 |
Algorithm | Helix Coil Sensors (SNR (dB)) | |||
---|---|---|---|---|
45–55 (Hz) | 25–75 (Hz) | 0–100 (Hz) | 0–200 (Hz) | |
LMS | 5.97 | 2.92 | 7.07 | 3.60 |
RLS | 0.64 | 3.92 | 5.74 | 3.54 |
AP | 2.22 | 2.14 | 2.72 | 1.93 |
KLMS | 0.04 | 0.21 | 0.78 | 0.36 |
FOBOS-KLMS | 3.40 | 7.46 | 7.89 | 7.34 |
ASRSG–KLMS | 2.39 | 5.89 | 6.58 | 6.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.; Xie, X.; Wei, S.; Jiang, Y. Adaptive Sparse Regular Split Gaussian Kernel Least Mean Square Algorithm for Super-Low-Frequency Motion-Induced Noise Cancellation. Electronics 2024, 13, 2992. https://doi.org/10.3390/electronics13152992
Zuo H, Xie X, Wei S, Jiang Y. Adaptive Sparse Regular Split Gaussian Kernel Least Mean Square Algorithm for Super-Low-Frequency Motion-Induced Noise Cancellation. Electronics. 2024; 13(15):2992. https://doi.org/10.3390/electronics13152992
Chicago/Turabian StyleZuo, Hao, Xu Xie, Shize Wei, and Yanxin Jiang. 2024. "Adaptive Sparse Regular Split Gaussian Kernel Least Mean Square Algorithm for Super-Low-Frequency Motion-Induced Noise Cancellation" Electronics 13, no. 15: 2992. https://doi.org/10.3390/electronics13152992
APA StyleZuo, H., Xie, X., Wei, S., & Jiang, Y. (2024). Adaptive Sparse Regular Split Gaussian Kernel Least Mean Square Algorithm for Super-Low-Frequency Motion-Induced Noise Cancellation. Electronics, 13(15), 2992. https://doi.org/10.3390/electronics13152992