A Novel Switch Architecture for Multi-Die Optimization with Efficient Connections
Abstract
:1. Introduction
- A switch architecture that incorporates queue mapping to suit the intricacies of a complex multi-die architecture.
- A scalable single-chip switch structure featuring a unified interface.
- Optimizations in scheduling that enhance deadlock resolution in multicast traffic and enable fair arbitration in case of output blocking.
2. Proposed Architecture
2.1. Switch Architecture
- The structure is partitioned into P segments, implemented on P dies, with each die having ports.
- Each die is equipped with N queues, allocating for input queues dedicated to local die ports, and the remainder assigned as virtual queues mapped to ports from other dies within the local die.
- Three types of interfaces are present on each die: SerDes for external port data transfer, southern interface, and northern interface for inter-die data transfer.
- Every input port comprises P input queues, denoted as , where i represents the input port number, and j is the destination die number .
2.2. High-Performance Arbiter
2.3. Schedule Algorithm Optimization
3. Implementation and Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SoC | System-on-Chip |
FPGA | Field Programmable Gate Array |
RRA | Round-robin arbiter |
QoS | Quality of Service |
SLR | Super Logic Region |
Appendix A
Algorithm A1 Two-Stage Multicast Processing Function |
|
References
- Lau, J.H. Recent Advances and Trends in Advanced Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2022, 12, 228–252. [Google Scholar] [CrossRef]
- Lee, H.J.; Mahajan, R.; Sheikh, F.; Nagisetty, R.; Deo, M. Multi-die Integration Using Advanced Packaging Technologies. In Proceedings of the 2020 IEEE Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22–25 March 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Das Sharma, D.; Mahajan, R.V. Advanced packaging of chiplets for future computing needs. Nat. Electron. 2024, 7, 425–427. [Google Scholar] [CrossRef]
- Jeloka, S.; Cline, B.; Das, S.; Labbe, B.; Rico, A.; Herberholz, R.; DeLaCruz, J.; Mathur, R.; Hung, S. System technology co-optimization and design challenges for 3D IC. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–6. [Google Scholar] [CrossRef]
- McCann, S.; Lee, H.H.; Refai-Ahmed, G.; Lee, T.; Ramalingam, S. Warpage and Reliability Challenges for Stacked Silicon Interconnect Technology in Large Packages. In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 2345–2350. [Google Scholar] [CrossRef]
- Mahajan, R.; Qian, Z.; Viswanath, R.S.; Srinivasan, S.; Aygün, K.; Jen, W.L.; Sharan, S.; Dhall, A. Embedded Multidie Interconnect Bridge—A Localized, High-Density Multichip Packaging Interconnect. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 1952–1962. [Google Scholar] [CrossRef]
- Mahajan, R.; Sankman, R.; Aygun, K.; Qian, Z.; Dhall, A.; Rosch, J.; Mallik, D.; Salama, I. Embedded Multi-die Interconnect Bridge (EMIB). In Advances in Embedded and Fan-Out Wafer-Level Packaging Technologies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; Chapter 23, pp. 487–499. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, C.A.; Kuo, C.C.; Chen, M.F.; Tung, C.H.; Chiou, W.C.; Yu, D. Ultra High Density SoIC with Sub-micron Bond Pitch. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 576–581. [Google Scholar] [CrossRef]
- Chakravarthi, V.S. A Practical Approach to VLSI System on Chip (SoC) Design; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Pal, S.; Petrisko, D.; Kumar, R.; Gupta, P. Design Space Exploration for Chiplet-Assembly-Based Processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1062–1073. [Google Scholar] [CrossRef]
- Shan, G.; Zheng, Y.; Xing, C.; Chen, D.; Li, G.; Yang, Y. Architecture of Computing System based on Chiplet. Micromachines 2022, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, J.K.; Wickramanayaka, S.; Zhang, S.; Weerasekera, R.; Dutta, R.; Chang, K.F.; Chui, K.J.; Li, H.Y.; Wee Ho, D.S.; et al. Heterogeneous 2.5D integration on through silicon interposer. Appl. Phys. Rev. 2015, 2, 021308. [Google Scholar] [CrossRef]
- Lee, C.C.; Hung, C.; Cheung, C.; Yang, P.F.; Kao, C.L.; Chen, D.L.; Shih, M.K.; Chien, C.L.C.; Hsiao, Y.H.; Chen, L.C.; et al. An Overview of the Development of a GPU with Integrated HBM on Silicon Interposer. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1439–1444. [Google Scholar] [CrossRef]
- Sunohara, M.; Tokunaga, T.; Kurihara, T.; Higashi, M. Silicon interposer with TSVs (Through Silicon Vias) and fine multilayer wiring. In Proceedings of the 2008 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 847–852. [Google Scholar] [CrossRef]
- Raikar, R.; Stroobandt, D. Multi-Die Heterogeneous FPGAs: How Balanced Should Netlist Partitioning Be? In Proceedings of the 24th ACM/IEEE Workshop on System Level Interconnect Pathfinding, New York, NY, USA, 27 January 2023. SLIP ’22. [Google Scholar]
- Lee, C.C.; Chang, Y.W. Floorplanning for Embedded Multi-Die Interconnect Bridge Packages. In Proceedings of the 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Francisco, CA, USA, 29 October–2 November 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, W.; Huang, P.T.; Li, S.H.; Hung, T.Y.; Wu, S.H.; Dai, M.J.; Chung, I.S.; Chen, W.C.; Wang, C.H.; et al. An Embedded Multi-Die Active Bridge (EMAB) Chip for Rapid-Prototype Programmable 2.5D/3D Packaging Technology. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12–17 June 2022; pp. 262–263. [Google Scholar] [CrossRef]
- Kutuzov, D.; Osovsky, A.; Starov, D.; Stukach, O.; Maltseva, N.; Surkov, D. Crossbar Switch Arbitration with Traffic Control for NoC. In Proceedings of the 2022 International Siberian Conference on Control and Communications (SIBCON), Tomsk, Russia, 17–19 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Zidan, M.A.; Lu, W.D. A Crossbar-Based In-Memory Computing Architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4224–4232. [Google Scholar] [CrossRef]
- Yun, Q.; Xu, Q.; Zhang, Y.; Chen, Y.; Sun, Y.; Chen, C. Flexible Switching Architecture with Virtual-Queue for Time-Sensitive Networking Switches. In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Bawani, K.; Englert, M.; Westermann, M. Online Packet Scheduling for CIOQ and Buffered Crossbar Switches. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, New York, NY, USA, 11–13 July 2016; SPAA ’16; pp. 241–250. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Bistouni, F. Crossbar-based interconnection networks. Ser. Comput. Commun. Netw. 2018, 12, 164–173. [Google Scholar]
- Park, J.; Nam, S.; Moon, S.; Kim, J. Optimal Channel Design for Die-to-Die Interface in Multi-die Integration Applications. In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2023; pp. 1509–1513. [Google Scholar] [CrossRef]
- Shin, G.; Kim, J.; Kim, J.Y. OpenMDS: An Open-Source Shell Generation Framework for High-Performance Design on Xilinx Multi-Die FPGAs. IEEE Comput. Archit. Lett. 2022, 21, 101–104. [Google Scholar] [CrossRef]
- Di, Z.; Tao, R.; Mai, J.; Chen, L.; Lin, Y. LEAPS: Topological-Layout-Adaptable Multi-Die FPGA Placement for Super Long Line Minimization. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 1259–1272. [Google Scholar] [CrossRef]
- Blunck, H.; Armbruster, D.; Bendul, J.; Hütt, M.T. The balance of autonomous and centralized control in scheduling problems. Appl. Netw. Sci. 2018, 3, 1–19. [Google Scholar] [CrossRef]
- Bermond, J.C.; Ergincan, F. Bus interconnection networks. Discret. Appl. Math. 1996, 68, 1–15. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, K.; Louri, A. Adapt-NoC: A Flexible Network-on-Chip Design for Heterogeneous Manycore Architectures. In Proceedings of the 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), Seoul, Republic of Korea, 27 February–3 March 2021; pp. 723–735. [Google Scholar] [CrossRef]
- Nasiri, E.; Shaikh, J.; Hahn Pereira, A.; Betz, V. Multiple Dice Working as One: CAD Flows and Routing Architectures for Silicon Interposer FPGAs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 1821–1834. [Google Scholar] [CrossRef]
- Papaphilippou, P.; Meng, J.; Luk, W. High-Performance FPGA Network Switch Architecture. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, 23–25 February 2020; FPGA ’20. pp. 76–85. [Google Scholar]
- Bashizade, R.; Sarbazi-Azad, H. P2R2: Parallel Pseudo-Round-Robin arbiter for high performance NoCs. Integration 2015, 50, 173–182. [Google Scholar] [CrossRef]
- Guo, Y.; Zheng, H.; Wang, J.; Xiao, S.; Li, G.; Yu, Z. A Low-Cost and High-Throughput Virtual-Channel Router with Arbitration Optimization. In Proceedings of the 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), Chengdu China, 13–15 November 2019; pp. 75–76. [Google Scholar] [CrossRef]
- Nguyen, H.K.; Tran, X.T. A novel reconfigurable router for QoS guarantees in real-time NoC-based MPSoCs. J. Syst. Archit. 2019, 100, 101664. [Google Scholar] [CrossRef]
- Zheng, S.Q.; Yang, M. Algorithm-Hardware Codesign of Fast Parallel Round-Robin Arbiters. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 84–95. [Google Scholar] [CrossRef]
- Oveis-Gharan, M.; Khan, G.N. Index-Based Round-Robin Arbiter for NoC Routers. In Proceedings of the 2015 IEEE Computer Society Annual Symposium on VLSI, Montpellier, France, 8–10 July 2015; pp. 62–67. [Google Scholar] [CrossRef]
- Luo, J.; Wu, W.; Xing, Q.; Xue, M.; Yu, F.; Ma, Z. A Low-Latency Fair-Arbiter Architecture for Network-on-Chip Switches. Appl. Sci. 2022, 12, 12458. [Google Scholar] [CrossRef]
- Jin, Z.; Jia, W.K. P3FA: Unified Unicast/Multicast Forwarding Algorithm for High-Performance Router/Switch. IEEE Trans. Consum. Electron. 2022, 68, 327–335. [Google Scholar] [CrossRef]
- Mhamdi, L. On the Integration of Unicast and Multicast Cell Scheduling in Buffered Crossbar Switches. IEEE Trans. Parallel Distrib. Syst. 2009, 20, 818–830. [Google Scholar] [CrossRef]
- Chuang, S.T.; Goel, A.; McKeown, N.; Prabhakar, B. Matching output queueing with a combined input/output-queued switch. IEEE J. Sel. Areas Commun. 1999, 17, 1030–1039. [Google Scholar] [CrossRef]
- Gran, E.G.; Zahavi, E.; Reinemo, S.A.; Skeie, T.; Shainer, G.; Lysne, O. On the Relation between Congestion Control, Switch Arbitration and Fairness. In Proceedings of the 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Newport Beach, CA, USA, 23–26 May 2011; pp. 342–351. [Google Scholar] [CrossRef]
- Liao, Y.C.; Mak, W.K. Pin Assignment Optimization for Multi-2.5D FPGA-Based Systems With Time-Multiplexed I/Os. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 494–506. [Google Scholar] [CrossRef]
Design | N = 3 | N = 6 | N = 12 | N = 18 |
---|---|---|---|---|
Centralized design | 7.184 | 11.159 | 18.881 | 26.897 |
Proposed design | 7.022 | 10.705 | 18.483 | 25.981 |
Design | LUT | Register | DSP | U/BRAM |
---|---|---|---|---|
single port | 22,014 | 34,072 | 5 | 8/48 |
switch core | 727 | 3720 | 684 | 0/0 |
single die | 136,938 | 216,131 | 714 | 48/288 |
total design | 421,247 | 661,943 | 2142 | 144/864 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Yu, F.; Li, W.; Xing, Q. A Novel Switch Architecture for Multi-Die Optimization with Efficient Connections. Electronics 2024, 13, 3205. https://doi.org/10.3390/electronics13163205
Luo J, Yu F, Li W, Xing Q. A Novel Switch Architecture for Multi-Die Optimization with Efficient Connections. Electronics. 2024; 13(16):3205. https://doi.org/10.3390/electronics13163205
Chicago/Turabian StyleLuo, Jifeng, Feng Yu, Weijun Li, and Qianjian Xing. 2024. "A Novel Switch Architecture for Multi-Die Optimization with Efficient Connections" Electronics 13, no. 16: 3205. https://doi.org/10.3390/electronics13163205
APA StyleLuo, J., Yu, F., Li, W., & Xing, Q. (2024). A Novel Switch Architecture for Multi-Die Optimization with Efficient Connections. Electronics, 13(16), 3205. https://doi.org/10.3390/electronics13163205