Calibration of a Class A Power Quality Analyser Connected to the Cloud in Real Time
Abstract
:1. Introduction
- The data are not fully available in the cloud.
- The systems are not open source and cannot be modified to suit the needs of each user.
- The calibration process is not described.
- Analysis of data sampling and window functions in the FFT to improve the accuracy of the PQAE. High-resolution measurements with a 10.24 kHz (97.65 µs) sampling rate for the FFT calculation.
- Continuous adjustment of 10/12-cycle windows as a function of the fundamental frequency.
- Perform and describe the calibration tests of the device according to the standard [3].
- Study the quality of measures in real time in the cloud and access with mobile devices and computers.
2. Description of the Power Quality Analyser
2.1. Voltage Measurement Circuit
2.2. Current Measurement Circuit
2.3. Frequency Measurement Circuit
2.4. Power Supply Circuit
2.5. Communications
3. Standard Framework for the Measurement of Spectral Components in the Low-Frequency Range
3.1. Measurement PQAE
- Frequency
- Sampling
3.2. Calculation of Harmonics
- Windowing
- Fast Fourier Transform FFT
- Grouping
- Smoothing
- Aggregation
4. Standard Guidelines on Calibration and Uncertainty Assessment for Power Quality Analyser
4.1. Standard Calibration Tests
4.1.1. Frequency Tests
4.1.2. Voltage Tests
4.1.3. Current Tests
4.1.4. Harmonics Voltage Tests
4.1.5. Harmonics Current Tests
4.2. Uncertainty Evaluation Process
4.2.1. Uncertainty of Fundamental Variables. Standard Uncertainty
4.2.2. Confidence Level of the Uncertainty Evaluation
5. Results
5.1. Test Device
5.1.1. Grid Emulator and Electronic Load
5.1.2. Instrumentation for Calibration
5.1.3. Test Configuration
5.2. Windows Functions
- (a)
- The rectangular window is optimal, since the peaks of each signal are researched at the exact frequency, and the signal has the adequate length and avoids discontinuities.
- (b)
- The spectral properties of Flat-Top produce larger errors, are the poorest and the leakage is especially long-range.
- (c)
- The rate of attenuation is slower in the Hamming window, and errors and accuracy are relatively lower.
- (d)
- In the case of the Han window, the accumulated rounding error in the process of solving the polynomial coefficients can be large.
5.3. Calibration Standard Tests
5.3.1. Frequency Tests
5.3.2. Voltage Tests
5.3.3. Current Tests
5.3.4. Harmonics Voltage Tests
5.3.5. Harmonics Current Tests
5.4. Uncertainty Evaluation
5.5. Data Visualisation
6. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFT | Discrete Fourier transform |
ETSI | European Telecommunications Standards Institute |
FFT | Fast Fourier transform |
FPGA | Field Programmable Gate Arrays |
GSM | Global System for Mobile Communications |
GPRS | General Packet Radio Service |
I2C | Inter-Integrated Circuit |
IoT | Internet of Things |
LPWAN | Low-Power Wide Area Network |
PCB | Printed Circuit Board |
Probability Density Functions | |
PQ | Power Quality |
PQAE | Power Quality Analyser Embedded |
PZEM | PZEM-004t V3.0 |
RMS | Root Mean Square |
Wi-Fi | Wireless Fidelity |
References
- Arranz-Gimon, A.; Zorita-Lamadrid, A.; Morinigo-Sotelo, D.; Duque-Perez, O. Analysis of the use of the Hanning Window for the measurement of interharmonic distortion caused by close tones in IEC standard framework. Electr. Power Syst. Res. 2022, 206, 107833. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Kalair, A.R.; Saleem, Z.; Khan, N. Review of harmonic analysis, modeling and mitigation techniques. Renew. Sustain. Energy Rev. 2017, 78, 1152–1187. [Google Scholar] [CrossRef]
- IEC 61000-4-30; Electromagnetic Compatibility (EMC)—Part 4–30: Testing and Measurement Techniques-Power Quality Measurement Methods 4. IEC: Geneva, Switzerland, 2015.
- IEC 61000 4-7; Electromagnetic Compatibility (EMC)—Part 4–7: Testing and Measurement Techniques—General Guide on Harmonics and Interharmonics Measurements and Instrumentation, for Power Supply Systems and Equipment Connected Thereto. IEC: Geneva, Switzerland, 2002.
- Teensy 4.1. Available online: https://www.pjrc.com/store/teensy41.html (accessed on 17 September 2023).
- Wemos d1 Mini. Available online: https://www.wemos.cc/en/latest/d1/d1_mini.html (accessed on 17 September 2023).
- Tarasiuk, T. Estimator-analyser of power quality: Part I—Methods and algorithms. Measurement 2011, 44, 238–247. [Google Scholar] [CrossRef]
- Tarasiuk, T.; Szweda, M.; Tarasiuk, M. Estimator–analyser of power quality: Part II—Hardware and research results. Measurement 2011, 44, 248–258. [Google Scholar] [CrossRef]
- Shao, Y.; Yao, Y.; Liu, H.; Lv, R.; Zan, P. Power Harmonic Detection Method Based on Dual HSMW Window FFT/apFFT Comprehensive Phase Difference. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021. [Google Scholar]
- Henry, M. An ultra-precise Fast Fourier Transform. Measurement 2023, 220, 113372. [Google Scholar] [CrossRef]
- Rakshit, H.; Ullah, M.A. A Comparative Study on Window Functions for Designing Efficient FIR Filter. In Proceedings of the 2014 9th International Forum on Strategic Technology (IFOST), Cox’s Bazar, Bangladesh, 21–23 October 2014. [Google Scholar] [CrossRef]
- Al Fajar, M.C.; Fatmawati, M.; Wulandari, P.; Astharini, D. Analysis of DFT and FFT Signal Transformation with Hamming Window in LabVIEW. In Proceedings of the 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), Yogyakarta, Indonesia, 28–30 September 2020. [Google Scholar] [CrossRef]
- Geng, M.; Wang, L.; Ren, Y.; Zhao, H. Analysis method of MSCSG rotor deflection signal based on windowed interpolation FFT. In Proceedings of the 2019 IEEE 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), Dalian, China, 28–30 September 2019. [Google Scholar]
- Loper, M.; Kilter, J.; Stiegler, R.; Meyer, J. Compliance Assessment of a Phasor Measurement Unit to IEC 61000-4-30 Class A for Power Quality Measurements in Transmission Systems. In Proceedings of the 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019, Kärdla, Estonia, 12–15 June 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Real-Calvo, R.; Moreno-Munoz, A.; Gonzalez-De-La-Rosa, J.J.; Pallares-Lopez, V.; Gonzalez-Redondo, M.J.; Moreno-Garcia, I.M. An Embedded System in Smart Inverters for Power Quality and Safety Functionality. Energies 2016, 9, 219. [Google Scholar] [CrossRef]
- Real-Calvo, R.; Moreno-Munoz, A.; Pallares-Lopez, V.; Gonzalez-Redondo, M.J.; Moreno-Garcia, I.M.; Palacios-Garcia, E.J. Sistema Electrónico Inteligente para el Control de la Interconexión entre Equipamiento de Generación Distribuida y la Red Eléctrica. Rev. Iberoam. Autom. Inform. Ind. 2017, 14, 56–69. [Google Scholar] [CrossRef]
- Thongkhao, Y.; Pora, W. A Low-Cost Wi-Fi Smart Plug with On-Off and Energy Metering Functions. In Proceedings of the 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Chiang Mai, Thailand, 28 June–1 July 2016. [Google Scholar] [CrossRef]
- Hlaing, W.; Thepphaeng, S.; Nontaboot, V.; Tangsunantham, N.; Sangsuwan, T.; Pira, C. Implementation of WiFi-Based Single phase Smart Meter for Internet of Things (IoT). In Proceedings of the 2017 International Electrical Engineering Congress, Pattaya, Thailand, 8–10 March 2017. [Google Scholar] [CrossRef]
- Medeiros, E.L.; Costa, E.G.; Lira, G.R.S.; Alves, A.C.R.; Diniz, C.V.A. A low cost power quality meter over the internet. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power, Belo Horizonte, Brazil, 16–19 October 2016. [Google Scholar] [CrossRef]
- Muralidhara, S.; Hegde, N.; Pm, R. An internet of things-based smart energy meter for monitoring device-level consumption of energy. Comput. Electr. Eng. 2020, 87, 106772. [Google Scholar] [CrossRef]
- Cano-Ortega, A.; García-Cumbreras, M.A.; Sánchez-Sutil, F.; Hernández, J.C. A Platform for Analysing Huge Amounts of Data from Households, Photovoltaics, and Electrical Vehicles: From Data to Information. Electronics 2022, 11, 3991. [Google Scholar] [CrossRef]
- Serrano, T.M.; da Silva, L.C.P.; Pereira, L.; Andreoli, F.; Ji, T.; Fruett, F. A Low-cost Smart Plug with Power Quality and Energy Analyzer Features. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies, Porto, Portugal, 9–11 September 2019. [Google Scholar] [CrossRef]
- Budhavarapu, J.; Singh, H.K.; Thirumala, K.; Sahoo, M. Design and implementation of smart meter for PQ-based tariff computation for LV distribution network consumers. Measurement 2023, 216, 112959. [Google Scholar] [CrossRef]
- Hans Cabrera, M.; Britam Gómez, A.; Jorge Torres, C.; Anibal, S.M.; Guillermo Ramírez, A. Integration of Industrial Power Quality Analyser and Open Source Hardware and Software Solution for Microgrids Monitoring. In Proceedings of the 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, Valparaiso, Chile, 13–27 November 2019. [Google Scholar] [CrossRef]
- Viciana, E.; Alcayde, A.M.; Baños, R.; Arrabal-Campos, F.M.; Zapata-Sierra, A.; Manzano-Agugliaro, F. OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyser. Sustainability 2018, 10, 4038. [Google Scholar] [CrossRef]
- Karthick, T.; Charles Raja, S.; Jeslin Drusila Nesamalar, J.; Chandrasekaran, K. Design of IoT based smart compact energy meter for monitoring and controlling the usage of energy and power quality issues with demand side management for a commercial building. Sustain. Energy Grids Netw. 2021, 26, 100454. [Google Scholar] [CrossRef]
- Abate, F.; Carratu', M.; Liguori, C.; Paciello, V. A low cost smart power meter for IoT. Measurement 2019, 136, 59–66. [Google Scholar] [CrossRef]
- Shreenidhi, H.S.; Ramaiah, N.S. A two-stage deep convolutional model for demand response energy management system in IoT-enabled smart grid. Sustain. Energy Grids Netw. 2022, 30, 100630. [Google Scholar] [CrossRef]
- Salor, Ö.; Buhan, S.; Ünsar, Ö.; Boyrazoğlu, B.; Altıntaş, E.; Atalık, T.; Haliloğlu, B.; İnan, T.; Kalaycıoğlu, A.; Terciyanlı, A.; et al. Mobile monitoring system to take nationwide PQ measurements on electricity transmission systems. Measurement 2009, 42, 501–515. [Google Scholar] [CrossRef]
- Chan, S.-Y.; Teng, J.-H.; Chen, C.-Y.; Chang, D. Multi-functional power quality monitoring and report-back system. Int. J. Electr. Power Energy Syst. 2010, 32, 728–735. [Google Scholar] [CrossRef]
- Viciana, E.; Arrabal-Campos, F.M.; Alcayde, A.; Baños, R.; Montoya, F.G. All-in-one three-phase smart meter and power quality analyzer with extended IoT capabilities. Measurement 2023, 206, 112309. [Google Scholar] [CrossRef]
- Artale, G.; Cataliotti, A.; Cosentino, V.; Guaiana, S.; Di Cara, D.; Panzavecchia, N.; Tine, G.; Dipaola, N.; Sambataro, M.G. PQ metrics implementation on low cost smart metering platforms. A case study analysis. In Proceedings of the 2018 IEEE 9th International Workshop on Applied Measurements for Power Systems, Bologna, Italy, 26–28 September 2018; pp. 26–28. [Google Scholar] [CrossRef]
- Lara-Cardoso, J.; Romero-Troncoso, R.D.J. Low-Cost Power Harmonics Analyzer of Nonlinear Loads Based on FPGA. In Proceedings of the 2008 IEEE Instrumentation and Measurement Technology Conference, Victoria, BC, Canada, 12–15 May 2008. [Google Scholar] [CrossRef]
- Alberto, M.; Soares, G.M.; Silva, L.R.; Duque, C.A.; Decker, I.C.; Ribeiro, P.F.; Junio, E.L.; Fvaro, A.D.; Passos, L.F. Newly Implemented Real-Time PQ Monitoring for Transmission 4.0 Substations. Electr. Power Syst. Res. 2022, 204, 107709. [Google Scholar] [CrossRef]
- YHDC. Available online: https://www.poweruc.pl/collections/rogowski-coil/products/rogowski-coil-rfsy-16-50-24-50-36-50-50-50-70-50?variant=33176656347222 (accessed on 28 July 2024).
- Vishay. Available online: https://www.vishay.com/docs/83608/h11aa1.pdf (accessed on 28 July 2024).
- Digikey. Available online: https://www.digikey.es/es/products/detail/cui-inc/PSK-15D-9-T/13922486 (accessed on 28 July 2024).
- Mouser. Available online: https://www.mouser.es/ProductDetail/CUI-Inc/PRM3W-E12-S5-S?qs=81r%252BiQLm7BTmTTUoPWt%252BTg%3D%3D (accessed on 28 July 2024).
- YHDC. Available online: https://www.poweruc.pl/collections/rogowski-coil/products/rogowski-coil-integrator-trv01-001ac-1-rated-input-100a-600a-1000a-3000a-6000a-rated-output-1v?variant=33184312262742 (accessed on 28 July 2024).
- Farnell. Available online: https://es.farnell.com/xp-power/iha0109s05/convertidor-dc-dc-5v-0-2a/dp/2708161 (accessed on 28 July 2024).
- IEC 62586-1:2017; Power Quality Measurement in Power Supply Systems—Part 1: Power Quality Instruments (PQI). IEC: Geneva, Switzerland, 2017.
- IEC 61000-2-4:2002; Electromagnetic Compatibility (EMC)—Part 2–4: Environment-Compatibility Levels in Industrial Plants for Low-Frequency Conducted Disturbances. IEC: Geneva, Switzerland, 2002.
- IEC 62586-2:2017; Power Quality Measurement in Power Supply Systems—Part 2: Functional Tests and Uncertainty Require-ments. IEC: Geneva, Switzerland, 2017.
- Xu, C.; Liao, Y. Weight extracting transform for instantaneous frequency estimation and signal reconstruction. Mech. Syst. Signal Process. 2024, 216, 111475. [Google Scholar] [CrossRef]
- Goswami, J.C.; Hoefel, A.E. Algorithms for estimating instantaneous frequency. Signal Process. 2004, 84, 1423–1427. [Google Scholar] [CrossRef]
- Stanković, L.; Daković, M.; Thayaparan, T. A real-time time-frequency based instantaneous frequency estimator. Signal Process. 2013, 93, 1392–1397. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Yin, J. Self-paced learning for instantaneous frequencies estimation in heavy noise environments. Signal Process. 2022, 196, 108507. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rao, K.; Kim, D.; Hwang, J.-J. Fast Fourier Transform: Algorithms and Applications. En Signals and Communication Technology; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2010. [Google Scholar]
- JCGM/WG 1; Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement, GUM 50. JCGM: Sèvres, France, 2008; 134p.
Model | Remote Monitoring | Mobile App | Remote Data Access | Uncertainty (%) | ||||
---|---|---|---|---|---|---|---|---|
F | V | I | HV | HI | ||||
Fluke 1736 & 1738 | Inside of the same Wi-Fi network | No | No | 0.1 | 0.01 | 0.03 | 0.01 | 0.01 |
Fluke 1770 | Inside of the same Wi-Fi network | No | Inside of the same Wi-Fi network | 0.01 | 0.004 | 0.03 | 0.01 | 0.01 |
Fluke 1760 | No | No | No | Class A | ||||
PQ-Box 300 | Yes (optional) | Yes (optional) | Yes (Harmonics excluded) | 0.001 | 0.1 | 0.01 | 0.05 | 0.01 |
Qualistar CA 8345 | Yes | Yes | Not specified | Class A | ||||
Circutor MYeBOX-150 | Yes | Yes | No | Class A | ||||
PQAE | Yes | Yes | Yes | 0.006 | 0.5 | 0.04 | 0.06 | 0.03 |
Test | Name | Test Points | Supplementary Test Requirements | Uncertainty (%) (k = 2.58, p = 99%) | ||
---|---|---|---|---|---|---|
L1 | L2 | L3 | ||||
To evaluate the uncertainty for frequency tests | F1-1 | P1: 42.5 Hz | N.A. | 0.0215 | 0.0221 | 0.0241 |
F1-2 | P2: 50.05 Hz | 0.0237 | 0.0302 | 0.0223 | ||
F1-3 | P3: 57.5 Hz | 0.0305 | 0.0304 | 0.0303 | ||
To evaluate the impact of voltage | F2-1 | P2: 50.05 Hz | S1:10% Vnom | 0.0311 | 0.0302 | 0.0312 |
To evaluate the impact of the voltage harmonics | F2-2 | S1Harmonics: H3rd–H15th | 0.0223 | 0.0211 | 0.0213 |
Test | Name | Test Points | Supplementary Test Requirements | Uncertainty (%) (k = 2.58, p = 99%) | ||
---|---|---|---|---|---|---|
L1 | L2 | L3 | ||||
To evaluate the uncertainty for voltage measurements | V1-1 | P1: 10% Vnom | N.A. | 0.0441 | 0.0037 | 0.0033 |
V1-2 | P3: 80% Vnom | 0.0611 | 0.0502 | 0.0511 | ||
V1-3 | P5:150% Vnom | 0.0724 | 0.0616 | 0.0605 | ||
To evaluate the impact of the frequency | V2-1 | P3: 80% Vnom | S1: 42.5 Hz | 0.0512 | 0.0504 | 0.0412 |
V2-2 | S3: 57.5 Hz | 0.0501 | 0.0514 | 0.0517 | ||
To evaluate the impact of the voltage harmonics | V3-1 | S1 Harmonics: H3rd–H15th | 0.0911 | 0.0905 | 0.0921 |
Test | Name | Test Points | Supplementary Test Requirements | Uncertainty (%) (k = 2.58, p = 99%) | |||
---|---|---|---|---|---|---|---|
L1 | L2 | L3 | N | ||||
To evaluate the uncertainty for current tests | I1-1 | P1: 10% Inom | N.A. | 0.0621 | 0.0496 | 0.0451 | 0.0110 |
I1-2 | P2: 80% Inom | 0.0273 | 0.0234 | 0.0192 | 0.0063 | ||
I1-3 | P3: 100% Inom | 0.0202 | 0.0135 | 0.0131 | 0.0050 | ||
To evaluate the impact of the frequency | I2-1 | P2: 80% Inom | S1: 42.5 Hz | 0.0107 | 0.0242 | 0.0268 | 0.0118 |
I2-2 | S3: 57.5 Hz | 0.0105 | 0.0173 | 0.0194 | 0.0113 | ||
To evaluate the impact of the current harmonics | I3-1 | S1 Harmonics: H3rd–H15th | 0.0321 | 0.0215 | 0.0201 | 0.0132 |
Test | Name | Test Points | Supplementary Test Requirements | Uncertainty (%) (k = 2.58, p = 99%) | ||
---|---|---|---|---|---|---|
L1 | L2 | L3 | ||||
Single even harmonic | HV1-1 | P1: 2nd H 5% Vnom | N.A. | 0.0171 | 0.0166 | 0.0151 |
Single odd harmonic | HV1-2 | P2: 3rd H 10% Vnom | 0.0125 | 0.00104 | 0.0102 | |
Single high harmonic | HV1-3 | P3: 50th H 1% Vnom | 0.0134 | 0.0111 | 0.0112 | |
All harmonics at low levels | HV1-4 | P4: (2–50th) H 10% of IEC 61000-2-4 | 0.0152 | 0.0134 | 0.0137 | |
All harmonics at high levels | HV1-5 | P5: (2–50th) H 200% of IEC 61000-2-4 | 0.0138 | 0.0115 | 0.0112 | |
Impact of the frequency | HV2-1 | P1: 2nd H 5% Vnom | S1: 42.5 Hz | 0.0142 | 0.0133 | 0.0134 |
HV2-2 | P3: 50th H 1% Vnom | S3: 57.5 Hz | 0.0157 | 0.0131 | 0.0135 | |
Impact of the voltage | HV3-1 | P2: 3rd H 10% Vnom | S1: 10% Vnom | 0.0921 | 0.0723 | 0.0621 |
HV3-2 | S3: 150% Vnom | 0.0132 | 0.0114 | 0.0112 |
Test | Name | Test Points | Supplementary Tests Requirements | Uncertainty (%) (k = 2.58, p = 99%) | |||
---|---|---|---|---|---|---|---|
L1 | L2 | L3 | N | ||||
Single even harmonic | HI1-1 | H1+2nd H 5% Inom | N.A. | 0.0321 | 0.0278 | 0.0311 | 0.0431 |
Single odd harmonic | HI1-2 | H1+3rd H 10% Inom | 0.0257 | 0.0245 | 0.0321 | 0.0642 | |
Single high harmonic | HI1-3 | H1+50th H 1% Inom | 0.0241 | 0.0321 | 0.0337 | 0.0811 | |
All harmonics at low levels | HI1-4 | H1+(2–50th) H 10% IEC 61000-2-4 | 0.0232 | 0.0267 | 0.0224 | 0.0102 | |
All harmonics at high levels | HI1-5 | H1+(2–50th) H 200% IEC 61000-2-4 | 0.0217 | 0.0243 | 0.0243 | 0.0105 | |
Impact of the frequency | HI2-1 | P1: 2nd H 5% Inom | S1: 42.5 Hz | 0.0254 | 0.0212 | 0.0231 | 0.0123 |
HI2-2 | P3: 50th H 1% Inom | S3: 57.5 Hz | 0.0234 | 0.0322 | 0.0365 | 0.0181 | |
Impact of the voltage | HI3-1 | P2: 3rd H 10% Inom | S1:10% Inom | 0.0121 | 0.0143 | 0.0127 | 0.0221 |
HI3-2 | S3: 100% Inom | 0.0134 | 0.0165 | 0.0156 | 0.0121 |
Measure k | Frequency (Hz) | Voltage (V) | Current (A) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L1 | L2 | L3 | L1 | L2 | L3 | N | |
1 | 49.984 | 50.000 | 49.991 | 22.997 | 23.011 | 23.027 | 0.9922 | 1.0138 | 1.0105 | 0.0201 |
2 | 49.992 | 50.000 | 49.995 | 23.009 | 23.016 | 23.015 | 0.9926 | 1.0148 | 1.0101 | 0.0202 |
3 | 49.997 | 49.987 | 49.999 | 22.987 | 23.049 | 22.999 | 0.9923 | 1.0148 | 1.0109 | 0.0207 |
4 | 49.999 | 49.981 | 50.000 | 23.045 | 23.013 | 22.988 | 0.9922 | 1.0150 | 1.0118 | 0.0213 |
5 | 50.001 | 49.991 | 50.001 | 22.989 | 23.040 | 22.989 | 0.9926 | 1.0144 | 1.0126 | 0.0209 |
6 | 50.003 | 49.984 | 50.003 | 23.009 | 22.999 | 22.984 | 0.9922 | 1.0136 | 1.0130 | 0.0211 |
7 | 49.990 | 49.994 | 49.990 | 23.014 | 23.023 | 23.017 | 0.9924 | 1.0131 | 1.0123 | 0.0203 |
8 | 49.995 | 49.997 | 49.981 | 23.002 | 23.045 | 22.991 | 0.9925 | 1.0127 | 1.0117 | 0.0196 |
9 | 49.997 | 50.011 | 49.990 | 22.983 | 23.011 | 23.019 | 0.9931 | 1.0126 | 1.0111 | 0.0188 |
10 | 50.002 | 50.009 | 49.985 | 22.982 | 23.027 | 23.018 | 0.9925 | 1.0135 | 1.0106 | 0.0197 |
Fundamental Variables | Mean | Standard Uncertainty | Standard Uncertainty (%) | Correlation Coefficients | |
---|---|---|---|---|---|
Frequency (Hz) | L1 | 49.996 | 0.0019 | 0.0038 | ρ (μf,μv) = −0.5842 |
L2 | 49.995 | 0.0031 | 0.0063 | ρ (μf,μv) = 0.1241 | |
L3 | 49.993 | 0.0023 | 0.0046 | ρ (μf,μv) = −0.3081 | |
Voltage (V) | L1 | 23.002 | 0.0060 | 0.0261 | ρ (μv,μf) = 0.6575 |
L2 | 23.023 | 0.0052 | 0.0226 | ρ (μv,μf) = 0.3427 | |
L3 | 23.005 | 0.0050 | 0.0221 | ρ (μv,μf) = −0.0108 | |
Current (A) | L1 | 0.99251 | 0.0008 | 0.0090 | ρ (μi,μf) = 0.6644 |
L2 | 1.01387 | 0.0002 | 0.0276 | ρ (μi,μf) = −0.0295 | |
L3 | 1.01151 | 0.0003 | 0.0302 | ρ (μi,μf) = 0.2461 | |
N | 0.02030 | 0.0002 | 1.2202 | ρ (μi,μf) = −0.3433 |
Fundamental Variables | Absolute Accuracy | |
---|---|---|
Frequency (Hz) | L1 | InputReading Frequency ± 0.0019 |
L2 | InputReading Frequency ± 0.0032 | |
L3 | InputReading Frequency ± 0.0023 | |
Voltage (V) | L1 | InputReadingVoltage ± 0.0060 |
L2 | InputReadingVoltage ± 0.0052 | |
L3 | InputReadingVoltage ± 0.0051 | |
Current (A) | L1 | InputReading Current ± 0.0001 |
L2 | InputReading Current ± 0.0002 | |
L3 | InputReading Current ± 0.0003 | |
N | InputReading Current ± 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Ortega, A.; Sanchez-Sutil, F.; Hernandez, J.C.; Gilabert-Torres, C.; Baier, C.R. Calibration of a Class A Power Quality Analyser Connected to the Cloud in Real Time. Electronics 2024, 13, 3209. https://doi.org/10.3390/electronics13163209
Cano-Ortega A, Sanchez-Sutil F, Hernandez JC, Gilabert-Torres C, Baier CR. Calibration of a Class A Power Quality Analyser Connected to the Cloud in Real Time. Electronics. 2024; 13(16):3209. https://doi.org/10.3390/electronics13163209
Chicago/Turabian StyleCano-Ortega, A., F. Sanchez-Sutil, J. C. Hernandez, C. Gilabert-Torres, and C. R. Baier. 2024. "Calibration of a Class A Power Quality Analyser Connected to the Cloud in Real Time" Electronics 13, no. 16: 3209. https://doi.org/10.3390/electronics13163209
APA StyleCano-Ortega, A., Sanchez-Sutil, F., Hernandez, J. C., Gilabert-Torres, C., & Baier, C. R. (2024). Calibration of a Class A Power Quality Analyser Connected to the Cloud in Real Time. Electronics, 13(16), 3209. https://doi.org/10.3390/electronics13163209