Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals
Abstract
:1. Introduction
- The duration of emotions is highly variable; therefore, the optimal window duration strongly depends on how the individual labels the elicited emotions.
- Within a given window, the individual can significantly change the label (due to the continuous nature of the dataset). Therefore, small window sizes can potentially capture ‘local variations’ but are more susceptible to capturing label artifacts, which may confuse the classifier. On the other hand, large window sizes combined with an appropriate metric condensing the participant’s annotation of the entire segment can filter out these label artifacts and capture more emotional information. However, this metric may be unsuitable if label fluctuations are significant. An optimal window duration can both filter out label artifacts and keep the metric representative of the labels within the segment.
- The representative metric of a consecutive overlapped window can better capture local emotional fluctuations that might be filtered out by the metric of the previous window (e.g., if the fluctuations occur at the end of the previous window).
2. Materials and Methods
2.1. Data Preprocessing
2.2. Labels Mapping
2.3. Labeling Schemes
2.4. Data Splitting
2.5. Feature Extraction
2.6. Algorithm Training and Performance Evaluation
2.7. Code Availability
3. Results
3.1. Impact of Window Duration Size and Overlap
3.2. Features Domain Performance Comparison
3.3. Labeling Schemes Comparison
4. Discussion
4.1. Recommendations for Determining Optimal Window Sizes
- First, determine the range of window sizes where the dominance meets the minimum GT label threshold criterion: . Other window ranges should be excluded from the analysis because non-dominant labels could confuse the classifier.
- Second, identify the best accuracy performance in terms of and within the range of window sizes found in the first step. If only one value meets these requirements, then the optimum combination of and has been found.
- Third, if more than one combination of and has the maximum accuracy within , select the one with higher dominance and the highest number of window instances (i.e., typically occurring with smaller and larger ). This ensures a more representative median label and makes training and testing more reliable. Additionally, it benefits from the reinforcement effect caused by overlapping windows.
- Fourth, careful consideration should be given to the correlation between dominance and accuracy over . For example, a low correlation may better reveal underlying effects that contribute to improved performance. Conversely, a high correlation may make it more difficult to determine whether the increasing accuracy over is due to higher dominance of the label within the window or other factors.
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khare, S.K.; Blanes-Vidal, V.; Nadimi, E.S.; Acharya, U.R. Emotion recognition and artificial intelligence: A systematic review (2014–2023) and research recommendations. Inf. Fusion 2023, 102, 102019. [Google Scholar] [CrossRef]
- Dzedzickis, A.; Kaklauskas, A.; Bucinskas, V. Human emotion recognition: Review of sensors and methods. Sensors 2020, 20, 592. [Google Scholar] [CrossRef] [PubMed]
- Bota, P.J.; Wang, C.; Fred, A.L.N.; Placido Da Silva, H. A Review, Current Challenges, and Future Possibilities on Emotion Recognition Using Machine Learning and Physiological Signals. IEEE Access 2019, 7, 140990–141020. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Dürichen, R.; Laerhoven, K.V. Wearable-Based Affect Recognition—A Review. Sensors 2019, 19, 4079. [Google Scholar] [CrossRef] [PubMed]
- Davoli, L.; Martalò, M.; Cilfone, A.; Belli, L.; Ferrari, G.; Presta, R.; Montanari, R.; Mengoni, M.; Giraldi, L.; Amparore, E.G.; et al. On driver behavior recognition for increased safety: A roadmap. Safety 2020, 6, 55. [Google Scholar] [CrossRef]
- Gomes, N.; Pato, M.; Lourenço, A.R.; Datia, N. A Survey on Wearable Sensors for Mental Health Monitoring. Sensors 2023, 23, 1330. [Google Scholar] [CrossRef]
- Kreibig, S.D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 2010, 84, 394–421. [Google Scholar] [CrossRef]
- van Dooren, M.; de Vries, J.J.J.; Janssen, J.H. Emotional sweating across the body: Comparing 16 different skin conductance measurement locations. Physiol. Behav. 2012, 106, 298–304. [Google Scholar] [CrossRef]
- Rinella, S.; Massimino, S.; Fallica, P.G.; Giacobbe, A.; Donato, N.; Coco, M.; Neri, G.; Parenti, R.; Perciavalle, V.; Conoci, S. Emotion Recognition: Photoplethysmography and Electrocardiography in Comparison. Biosensors 2022, 12, 811. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, J.; Liu, S.; Pan, J. Combining facial expressions and electroencephalography to enhance emotion recognition. Future Internet 2019, 11, 105. [Google Scholar] [CrossRef]
- Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A database for emotion analysis; Using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Miranda-Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affect. Comput. 2021, 12, 479–493. [Google Scholar] [CrossRef]
- Park, C.Y.; Cha, N.; Kang, S.; Kim, A.; Khandoker, A.H.; Hadjileontiadis, L.; Oh, A.; Jeong, Y.; Lee, U. K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Sci. Data 2020, 7, 293. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Castellini, C.; van den Broek, E.L.; Albu-Schaeffer, A.; Schwenker, F. A dataset of continuous affect annotations and physiological signals for emotion analysis. Sci. Data 2019, 6, 196. [Google Scholar] [CrossRef]
- Zitouni, M.S.; Park, C.Y.; Lee, U.; Hadjileontiadis, L.J.; Khandoker, A. LSTM-Modeling of Emotion Recognition Using Peripheral Physiological Signals in Naturalistic Conversations. IEEE J. Biomed. Heal. Inform. 2023, 27, 912–923. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Goshvarpour, A. The potential of photoplethysmogram and galvanic skin response in emotion recognition using nonlinear features. Phys. Eng. Sci. Med. 2020, 43, 119–134. [Google Scholar] [CrossRef]
- Martinez, H.P.; Bengio, Y.; Yannakakis, G. Learning deep physiological models of affect. IEEE Comput. Intell. Mag. 2013, 8, 20–33. [Google Scholar] [CrossRef]
- Ayata, D.; Yaslan, Y.; Kamasak, M.E. Emotion Based Music Recommendation System Using Wearable Physiological Sensors. IEEE Trans. Consum. Electron. 2018, 64, 196–203. [Google Scholar] [CrossRef]
- Kang, D.H.; Kim, D.H. 1D Convolutional Autoencoder-Based PPG and GSR Signals for Real-Time Emotion Classification. IEEE Access 2022, 10, 91332–91345. [Google Scholar] [CrossRef]
- Maeng, J.H.; Kang, D.H.; Kim, D.H. Deep Learning Method for Selecting Effective Models and Feature Groups in Emotion Recognition Using an Asian Multimodal Database. Electronics 2020, 9, 1988. [Google Scholar] [CrossRef]
- Domínguez-Jiménez, J.A.; Campo-Landines, K.C.; Martínez-Santos, J.C.; Delahoz, E.J.; Contreras-Ortiz, S.H. A machine learning model for emotion recognition from physiological signals. Biomed. Signal Process. Control 2020, 55, 101646. [Google Scholar] [CrossRef]
- Bamonte, M.F.; Risk, M.; Herrero, V. Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals Using Artificial Intelligence Algorithms. In Advances in Bioengineering and Clinical Engineering; Ballina, F.E., Armentano, R., Acevedo, R.C., Meschino, G.J., Eds.; Springer: Cham, Switzerland, 2024; pp. 23–35. [Google Scholar] [CrossRef]
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C.; Chen, S.H. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef]
- Zhang, T.; Ali, A.E.; Wang, C.; Hanjalic, A.; Cesar, P. Corrnet: Fine-grained emotion recognition for video watching using wearable physiological sensors. Sensors 2021, 21, 52. [Google Scholar] [CrossRef]
- Boyer, R.S.; Moore, J.S. MJRTY—A Fast Majority Vote Algorithm. In Automated Reasoning: Essays in Honor of Woody Bledsoe; Boyer, R.S., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 1991; pp. 105–117. [Google Scholar] [CrossRef]
- Menezes, M.L.; Samara, A.; Galway, L.; Sant’Anna, A.; Verikas, A.; Alonso-Fernandez, F.; Wang, H.; Bond, R. Towards emotion recognition for virtual environments: An evaluation of eeg features on benchmark dataset. Pers. Ubiquitous Comput. 2017, 21, 1003–1013. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Godin, C.; Prost-Boucle, F.; Campagne, A.; Charbonnier, S.; Bonnet, S.; Vidal, A. Selection of the Most Relevant Physiological Features for Classifying Emotion. In Proceedings of the 2nd International Conference on Physiological Computing Systems PhyCS, Angers, France, 11–13 February 2015; pp. 17–25. [Google Scholar] [CrossRef]
- van Gent, P.; Farah, H.; van Nes, N.; van Arem, B. Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project. J. Open Res. Softw. 2019, 7, 32. [Google Scholar] [CrossRef]
- Dissanayake, V.; Seneviratne, S.; Rana, R.; Wen, E.; Kaluarachchi, T.; Nanayakkara, S. SigRep: Toward Robust Wearable Emotion Recognition with Contrastive Representation Learning. IEEE Access 2022, 10, 18105–18120. [Google Scholar] [CrossRef]
- Islam, M.R.; Moni, M.A.; Islam, M.M.; Rashed-Al-Mahfuz, M.; Islam, M.S.; Hasan, M.K.; Hossain, M.S.; Ahmad, M.; Uddin, S.; Azad, A.; et al. Emotion Recognition from EEG Signal Focusing on Deep Learning and Shallow Learning Techniques. IEEE Access 2021, 9, 94601–94624. [Google Scholar] [CrossRef]
- Schuller, B.; Vlasenko, B.; Eyben, F.; Wöllmer, M.; Stuhlsatz, A.; Wendemuth, A.; Rigoll, G. Cross-Corpus acoustic emotion recognition: Variances and strategies. IEEE Trans. Affect. Comput. 2010, 1, 119–131. [Google Scholar] [CrossRef]
- Saganowski, S.; Komoszyńska, J.; Behnke, M.; Perz, B.; Kunc, D.; Klich, B.; Kaczmarek, Ł.D.; Kazienko, P. Emognition dataset: Emotion recognition with self-reports, facial expressions, and physiology using wearables. Sci. Data 2022, 9, 158. [Google Scholar] [CrossRef]
- Verduyn, P.; Delvaux, E.; Van Coillie, H.; Tuerlinckx, F.; Mechelen, I.V. Predicting the Duration of Emotional Experience: Two Experience Sampling Studies. Emotion 2009, 9, 83–91. [Google Scholar] [CrossRef]
- Verduyn, P.; Van Mechelen, I.; Tuerlinckx, F. The relation between event processing and the duration of emotional experience. Emotion 2011, 11, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Verduyn, P.; Tuerlinckx, F.; Van Gorp, K. Measuring the duration of emotional experience: The influence of actual duration and response format. Qual. Quant. 2013, 47, 2557–2567. [Google Scholar] [CrossRef]
- Dawson, M.E.; Schell, A.M.; Courtney, C.G. The skin conductance response, anticipation, and decision-making. J. Neurosci. Psychol. Econ. 2011, 4, 111–116. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity, 2nd ed.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Santamaria-Granados, L.; Munoz-Organero, M.; Ramirez-Gonzalez, G.; Abdulhay, E.; Arunkumar, N. Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS). IEEE Access 2019, 7, 57–67. [Google Scholar] [CrossRef]
- Cittadini, R.; Tamantini, C.; Scotto di Luzio, F.; Lauretti, C.; Zollo, L.; Cordella, F. Affective state estimation based on Russell’s model and physiological measurements. Sci. Rep. 2023, 13, 9786. [Google Scholar] [CrossRef]
- Bota, P.; Brito, J.; Fred, A.; Cesar, P.; Silva, H. A real-world dataset of group emotion experiences based on physiological data. Sci. Data 2024, 11, 116. [Google Scholar] [CrossRef]
- Bustos-López, M.; Cruz-Ramírez, N.; Guerra-Hernández, A.; Sánchez-Morales, L.N.; Cruz-Ramos, N.A.; Alor-Hernández, G. Wearables for Engagement Detection in Learning Environments: A Review. Biosensors 2022, 12, 509. [Google Scholar] [CrossRef]
Classic Labeling Scheme | Weak Labeling Scheme | Strong Labeling Scheme |
---|---|---|
(CLS) | (WLS) | (SLS) |
map | map | map |
map | map | map |
discard | discard |
Parameter | Description |
---|---|
LE | Lyapunov exponent (Rosenstein et al. method [27]) |
ApEn | Approximate entropy |
SD1l | Poincaré plot standard deviation perpendicular to the line of identity [9], for lag l 1 [16] |
SD2l | Poincaré plot standard deviation along the identity line [9], for lag l 1 |
SD12l | Ratio of SD1-to-SD2, for lag l 1 |
Sl | Area of ellipse described by SD1 and SD2, for lag l 1 [16] |
Parameter | Description |
---|---|
GSR [28]: | |
Avgd | Average of the derivative |
Negs | % of neg. samples in the derivative |
Lm | Number of local minima |
PPG [28,29]: | |
BPM | Beats per minute |
IBI | Mean inter-beat interval |
SDNN | Standard deviation of intervals between adjacent beats |
RMSSD | Root mean square of successive differences between neighboring heart beat intervals |
SDSD | Standard deviation of successive differences between neighboring heart beat intervals |
Algorithm | Hyperparameters |
---|---|
KNN | neighbors = 5 |
DT | criterion = gini |
RF | estimators = 5 |
SVM | regularization |
GBM | estimators = 5 |
CNN-SLP | See Figure 4 |
Valence 1 | Arousal 2 | |||||
---|---|---|---|---|---|---|
Classifier | UAR | ACC | F1 | UAR | ACC | F1 |
KNN | 0.69 ± 0.08 | 0.73 ± 0.07 | 0.69 ± 0.08 | 0.70 ± 0.06 | 0.73 ± 0.06 | 0.70 ± 0.06 |
DT | 0.69 ± 0.08 | 0.71 ± 0.07 | 0.69 ± 0.08 | 0.70 ± 0.06 | 0.71 ± 0.05 | 0.70 ± 0.07 |
RF | 0.71 ± 0.08 | 0.74 ± 0.07 | 0.71 ± 0.08 | 0.73 ± 0.07 | 0.75 ± 0.06 | 0.73 ± 0.07 |
SVM | 0.62 ± 0.11 | 0.70 ± 0.08 | 0.59 ± 0.14 | 0.65 ± 0.08 | 0.71 ± 0.05 | 0.63 ± 0.11 |
GBM | 0.65 ± 0.09 | 0.72 ± 0.07 | 0.63 ± 0.11 | 0.67 ± 0.08 | 0.73 ± 0.05 | 0.66 ± 0.10 |
CNN-SLP | 0.60 ± 0.09 | 0.67 ± 0.09 | 0.58 ± 0.11 | 0.62 ± 0.08 | 0.67 ± 0.07 | 0.60 ± 0.11 |
Baseline | 0.50 | 0.61 | 0.37 | 0.5 | 0.59 | 0.37 |
Author | Modalities | Windowing/Overlap 1 | Features 2 | Classifier | ACC 3 |
---|---|---|---|---|---|
Goshvarpour et al. [16] | PPG, GSR | - | NL | PNN | A: V: |
Martínez et al. [17] | PPG, GSR | W: Yes O: No | A | SCAE 4 | < 5 |
Ayata et al. [18] | PPG, GSR | W: Yes O: Yes | ST | RF | A: V: |
Kang et al. [19] | PPG, GSR | W: Yes O: No | A | CNN | A: V: |
Domínguez-Jiménez et al. [21] | PPG, GSR | W: Yes O: No | ST, NL 6 | SVM | 7 |
Our previous work [22] | PPG, GSR | W: No O: No | TST | SVM | A: V: 8 |
Zitouni et al. [15] | PPG, GSR, and HR | W: Yes O: Yes | ST, NL | LSTM | A: V: |
Santamaría-Granados et al. [39] | ECG-GSR | W: Yes O: Yes | TST, F, NL | DCNN | A: V: |
Cittadini et al. [40] | GSR, ECG, and RESP | W: Yes O: No | TST | KNN | A: V: |
Zhang et al. [24] | PPG, GSR, ECG, and HR | W: Yes O: No | A | CorrNet 9 | A: V: |
Present work | PPG, GSR | W: No O: Yes | NL | RF | A: V: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamonte, M.F.; Risk, M.; Herrero, V. Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals. Electronics 2024, 13, 3333. https://doi.org/10.3390/electronics13163333
Bamonte MF, Risk M, Herrero V. Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals. Electronics. 2024; 13(16):3333. https://doi.org/10.3390/electronics13163333
Chicago/Turabian StyleBamonte, Marcos F., Marcelo Risk, and Victor Herrero. 2024. "Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals" Electronics 13, no. 16: 3333. https://doi.org/10.3390/electronics13163333
APA StyleBamonte, M. F., Risk, M., & Herrero, V. (2024). Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals. Electronics, 13(16), 3333. https://doi.org/10.3390/electronics13163333